Skip to main content

Parallel Implementation of a Central Decomposition Method for Solving Large-Scale Planning Problems

Abstract

We use a decomposition approach to solve three types of realistic problems: block-angular linear programs arising in energy planning, Markov decision problems arising in production planning and multicommodity network problems arising in capacity planning for survivable telecommunication networks. Decomposition is an algorithmic device that breaks down computations into several independent subproblems. It is thus ideally suited to parallel implementation. To achieve robustness and greater reliability in the performance of the decomposition algorithm, we use the Analytic Center Cutting Plane Method (ACCPM) to handle the master program. We run the algorithm on two different parallel computing platforms: a network of PC's running under Linux and a genuine parallel machine, the IBM SP2. The approach is well adapted for this coarse grain parallelism and the results display good speed-up's for the classes of problems we have treated.

This is a preview of subscription content, access via your institution.

References

  1. M. Abbad and J. Filar, “Algorithms for singularly perturbed limiting average Markov control problems, ” IEEE Transactions on Automatic Control, vol. 9, pp. 153–168, 1992.

    Google Scholar 

  2. D. Alevras, M. Grötschel, and R. Wesséli, “Capacity and survivability models for telecommunication networks, ” Tech. Report, Konrad-Zuse-Zentrum für Information stechnik, Takustrasse 7, D-14195 Berlin, Germany, June 1997.

  3. O. Bahn, O. du Merle, J.-L. Goffin, and J.-P. Vial, “A cutting plane method from analytic centers for stochastic programming, ” Mathematical Programming, vol. 69, pp. 45–73, 1995.

    Google Scholar 

  4. O. Bahn, A. Haurie, S. Kypreos, and J.-P. Vial, “A multinational MARKAL model to study joint implementation of carbon dioxide emission reduction measures, ” in Joint Implementation of Climate Change Commitments: Opportunities and Apprehensions, P. Ghosh and J. Puri (Eds.), Tata Energy Research Institute: New Delhi, 1994, pp. 43–50.

    Google Scholar 

  5. D.J. Becker, T. Sterling, D. Savarese, J.E. Dorband, U.A. Ranawake, and C.V. Packer, “Beowulf: A parallel workstation for scientific computation, ” in Proceedings of the International Conference on Parallel Processing (ICPP), 1995, pp. 11–14.

  6. J.F. Benders, “Partitioning procedures for solving mixed-variables programming problems, ” Numerische Mathematik, vol. 4, pp. 238–252, 1962.

    Google Scholar 

  7. D.P. Bertsekas and J.N. Tsitsiklis, “Parallel an Distributed Computations, ” Prentice-Hall: Englewood Cliffs, 1989.

    Google Scholar 

  8. E. Cheney and A. Goldstein, “Newton's method for convex programming and Tchebycheff approximation, ” Numerische Mathematik, vol. 1, pp. 253–268, 1959.

    Google Scholar 

  9. G.B. Dantzig and P. Wolfe, “The decomposition algorithm for linear programming, ” Econometrica, vol. 29, pp. 767–778, 1961.

    Google Scholar 

  10. O. Du Merle, J.-L. Goffin, and J.-P. Vial, “On the comparative behavior of Kelley's cutting plane method and the analytic center cutting plane method, ” Tech. Report, Logilab, University of Geneva, 102 Bd Carl-Vogt, CH-1211, March 1996. To appear in Computational Optimization and Applications.

  11. J. Eckstein, “Large-scale parallel computing, optimization, and operations research: A survey, ” ORSA CSTS Newsletter, vol. 14, pp. 1–28, 1993.

    Google Scholar 

  12. J. Filar and A. Haurie, “Optimal ergodic control of singularly perturbed hybrid stochastic systems, ” Lectures in Applied Mathematics, vol. 33, pp. 101–126, 1997.

    Google Scholar 

  13. M.P.I. Forum, “MPI: A message-passing interface standard, ” International Journal of Supercomputer Applications, vol. 8, 1994.

  14. A. Geist, A. Begelin, J. Dongarra, W. Jiang, and R. Mancheck, “PVM: Parallel virtual machine—A user's guide and tutorial for networked parallel computing, ” MIT Press: Cambridge, 1994.

    Google Scholar 

  15. G. Ghellinck and J.-P. Vial, “A polynomial Newton method for linear programming, ” Algorithmica, vol. 1, pp. 425–453, 1986.

    Google Scholar 

  16. J.-L. Goffin, J. Gondzio, R. Sarkissian, and J.-P. Vial, “Solving nonlinear multicommodity flow problems by the analytic center cutting plane method, ” Mathematical Programming, vol. 76, pp. 131–154, 1997.

    Google Scholar 

  17. J.-L. Goffin, A. Haurie, and J.-P. Vial, “Decomposition and nondifferentiable optimization with the projective algorithm, ” Management Science, vol. 38, pp. 284–302, 1992.

    Google Scholar 

  18. J.-L. Goffin and J.-P. Vial, “Interior point methods for nondifferentiable optimization, ” in Operations Research Proceedings 1997, P. Kischka, H.-W. Lorenz, U. Derigs, W. Domaschke, P. Kleinschmidt, and R. Möhring (Eds.), Springer Verlag: Berlin, Germany, 1998, pp. 35–49.

    Google Scholar 

  19. J. Gondzio, “HOPDM(version 2.12)—a fast LP solver based on a primal-dual interior point method, ” European Journal of Operational Research, vol. 85, pp. 221–225, 1995.

    Google Scholar 

  20. J. Gondzio, O. Du Merle, R. Sarkissian, and J.-P. Vial, “ACCPM—a library for convex optimization based on an analytic center cutting plane method, ” European Journal of Operational Research, vol. 94, pp. 206–211, 1996.

    Google Scholar 

  21. J. Gondzio and J.-P. Vial, “Warm start and "-subgradients in cutting plane scheme for block-angular linear programs, ” Computational Optimization and Applications, vol. 14, pp.17–36, 1999.

    Google Scholar 

  22. W. Gropp and E. Lusk, “User's guide to MPICH, a portable implementation of MPI, ” Tech. Report ANL/MCSTM-ANL-96/6, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, USA, 1996.

    Google Scholar 

  23. P. Huard, “Resolution of mathematical programming with nonlinear constraints by the methods of centers, ” in Nonlinear Programming, J. Abadie (Ed.), North-Holland: Amsterdam, 1967, pp. 209–222.

  24. K.L. Jones, I.J. Lustig, J.M. Farvolden, and W.B. Powell, “Multicommodity network flows: The impact of formulation on decomposition, ” Mathematical Programming, vol. 62, pp. 95–117, 1993.

    Google Scholar 

  25. N.K. Karmarkar, “Anewpolynomial-time algorithm for linear programming, ” Combinatorica, vol. 4, pp. 373–395, 1984.

    Google Scholar 

  26. J.E. Kelley, “The cutting plane method for solving convex programs, ” Journal of the IAM, vol. 8, pp. 703–712, 1960.

    Google Scholar 

  27. K.C. Kiwiel, A survey of bundle methods for nondifferentiable optimization, ” in Mathematical Programming: Recent Developments and Applications, M. Iri and K. Tanabe (Eds.), Kluwer Academic Publishers, 1989, pp. 262–282.

  28. C. Lemaréchal, “Nondifferentiable optimization, ” in Handbooks in Operations Research and Management Science, G. Nemhauser, A.R. Kan, and M. Todd (Eds.), vol. 1 of Optimization, North-Holland, 1989, pp. 529–572.

  29. C. Lemaréchal, A. Nemirovskii, and Y. Nesterov, “New variants of bundle methods, ” Mathematical Programming, vol. 69, pp. 111–147, 1995.

    Google Scholar 

  30. A. Lisser, R. Sarkissian, and J.-P. Vial, “Survivability in telecommunication networks, ” Tech. Report 1995.3, Logilab, University of Geneva, 102 Bd Carl-Vogt, CH-1211, March 1995.

  31. M. Minoux, “Optimum synthesis of a network with non-simultaneous multicommodity flow requirements, ” in Studies on Graphs and Discrete Programming, P. Hansen (Eds.), Noth-Holland, 1981, pp. 269–277.

  32. M. Minoux, “Mathematical Programming: Theory and Algorithms, ” Wiley: New York, 1986.

    Google Scholar 

  33. J.E. Mitchell and M.J. Todd, “Solving combinatorial optimization problems using Karmarkar's algorithm, ” Mathematical Programming, vol. 56, pp. 245–284, 1992.

    Google Scholar 

  34. N. Nakicenovic, A. Gruebler, A. Inaba, S. Messner, S. Nilsson, Y. Nishimura, H-H. Rogner, A. Schaefer, L. Schrattenholzer, M. Strubegger, J. Swisher, D. Victor, and D. Wilson, “Long-term strategies for mitigating global warming, ” Energy—The International Journal, vol. 18, pp. 409–601, 1993.

    Google Scholar 

  35. A. Nemirovsky and D. Yudin, “nformational complexity and efficient methods for solution of convex extremal problems, ” Wiley & Sons: New York, 1983.

    Google Scholar 

  36. J. Renegar, “Apolynomial-time algorithm, based on Newton's method, for linear programming, ” Mathematical Programming, vol. 40, pp. 59–93, 1988.

    Google Scholar 

  37. D. Ridge, D. Becker, P. Merkey, and T. Sterling, “Beowulf: Harnessing the power of parallelism in a pile-of-PCs, ” in Proceedings, IEEE Aerospace, 1997.

  38. A. Ruszczyński, “A regularized decomposition method for minimizing a sum of polyhedral functions, ” Mathematical Programming, vol. 33, pp. 309–333, 1985.

    Google Scholar 

  39. A. Ruszczyński, “Parallel decomposition of multistage stochastic programs, ” Mathematical Programming, vol. 58, pp. 201–228, 1993.

    Google Scholar 

  40. R. Sarkissian, “Telecommunications networks: Routing and survivability optimization using a central cutting plane method, ” PhD thesis, École Polytechnique Fédérale de Lausanne, CH-1205 Ecublens, November 1997.

  41. M. Snir, S.W. Otto, S. Huss-Ledernan, D.W. Walker, and J. Dongarra, “MPI: the complete reference, ” MIT Press, Cambridge, 1996.

    Google Scholar 

  42. G. Sonnevend, “New algorithms in convex programming based on a notion of “centre” (for systems of analytic inequalities) and on rational extrapolation, ” in Trends in Mathematical Optimization: Proceedings of the 4th French–German Conference on Optimization in Irsee, Germany, April 1986, K.H. Hoffmann, J.B. Hiriart-Urruty, C. Lemaréchal, and J. Zowe (Eds.), vol. 84 of International Series of Numerical Mathematics, Birkhäuser Verlag: Basel, Switzerland, 1988, pp. 311–327.

    Google Scholar 

  43. Y. Ye, “A potential reduction algorithm allowing column generation, ” SIAM Journal on Optimization, vol. 2, pp. 7–20, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gondzio, J., Sarkissian, R. & Vial, JP. Parallel Implementation of a Central Decomposition Method for Solving Large-Scale Planning Problems. Computational Optimization and Applications 19, 5–29 (2001). https://doi.org/10.1023/A:1011298218729

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011298218729

  • decomposition
  • parallel computation
  • analytic center
  • cutting plane method
  • real-life problems