Skip to main content
Log in

31P NMR Studies of Diethyl Phosphite Derived Nanocrystalline Hydroxyapatite

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

31P nuclear magnetic resonance (NMR) spectroscopy was used to determine the structure of the intermediate species of sol derived from triethyl phosphite, calcium diethoxide and acetic acid. NMR spectral data revealed that the reaction proceeds via a dialkyl phosphite intermediate. The use of a dialkyl phosphite precursor (diethyl phosphite) with calcium diethoxide eliminated the aging time required in triethylphosphite method and offered an effective sol-gel procedure for monophasic hydroxyapatite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Soballe, E.S. Hansen, H.B. Rasmussen, and C. Bunger, in Hydroxyapatite Coatings in Orthopaedic Surgery, edited by R.G.T. Geesink and M. T. Manley (Raven Press Ltd.).

  2. K. Thomas, J.F. Kay, S. Cook, and M. Jarcho, J. Biomed. Mater. Res. 21, 1395 (1987).

    Google Scholar 

  3. S.W. Russell, K.A. Luptak, C.T. Suchicital, T.L. Alford, and V.B. Pizziconi, J. Am. Ceram. Soc. 79, 837 (1996).

    Google Scholar 

  4. A. Deptula, W. Lada, T. Olczac, R.Z. Legeros, and J.P. Legeros, in Bioceramics Vol. 9, edited by T. Kokubo, T. Nakamura, and F. Miyaji (Pergamon-Elsevier, UK, 1996), p. 313.

    Google Scholar 

  5. B.I. Lee, W.D. Samuels, L.-Q Wang, and G.J. Exarhos, J. Mater. Res. 11, 134 (1996).

    Google Scholar 

  6. Y. Masuda, K. Matubaram, and S. Sakka, J. Ceram. Soc. Japan 98, 1266 (1990).

    Google Scholar 

  7. T. Brendel, A. Engel, and C. Russel, J. Mat. Sci. Mat. in Med. 3, 175 (1992).

    Google Scholar 

  8. A.B. Hardy, W.E. Rhine, G. Gowda, T.J. McMohan, R.E. Riman, and H.K. Bowen, in Ultrastructure Processing of Advanced Ceramics, edited by J. D. McKenzie and D. R. Ulrich (Wiley, N. Y., 1988), p. 407.

    Google Scholar 

  9. B. Ben-Nissan and C. Chai, in Advances in Materials Science and Implant Orthopaedic Surgery, edited by R. Kossowsky and N. Kossovsky (Kluwer Pub., 1995), p. 265. NATO ASI Series, Series E: Applied Sciences, Vol. 294.

  10. P. Layrolle and A. Lebugle, Chem. Mater. 6, 1996 (1994).

    Google Scholar 

  11. J. Livage, P. Barboux, M.T. Vanderborre, C. Schmutz, and F. Taulelle, J. Non-Cryst. Solids 147/148, 18 (1992).

    Google Scholar 

  12. H. Takahashi, M. Yashima, M. Kakihana, and M. Yoshimura, Eur. J. Solid State Inorg. Chem. 32, 829 (1995).

    Google Scholar 

  13. Y. Kojima, A. Shiraishi, K. Ishii, T. Yasue, and Y. Arai, Phosphorus Res. Bull. 3, 79 (1993).

    Google Scholar 

  14. W. Weng, and J. Baptista, Biomaterials 19, 125 (1998).

    Google Scholar 

  15. Q. Qui, P. Vincent, B. Lowenberg, M. Sayer, and J.E. Davis, Cell Mater. 3, 351 (1993).

    Google Scholar 

  16. A. Nakahira and S. Yamaguchi, in Bioceramics 9, edited by T. Kokubo, T. Nakamura, and F. Miyaji (University Press, Cambridge, 1996), p. 423.

    Google Scholar 

  17. G. Kordas and C.C. Trapalis, J. Sol-Gel Sci. Tech. 9, 17 (1997).

    Google Scholar 

  18. G. Kordas and C.C. Trapalis, J. Sol-Gel Sci. Tech. 9, 305 (1997).

    Google Scholar 

  19. A. Deptula, W. Lada, T. Olczak, A. Borello, C. Avani, and A. di Bartolomeo, J. Non-Cryst. Solids 147, 537 (1992).

    Google Scholar 

  20. D.B. Haddow, P.F. James, and R. Van Noort, J. Mater. Sci.: Mater. Med. 7, 255 (1995).

    Google Scholar 

  21. W. Weng, L. Huang, and G. Han, Appl. Organomet. Chem. 13, 555 (1999).

    Google Scholar 

  22. P. Layrolle, A. Ito, and T. Tateishi, J. Am. Ceram. Soc. 81(6), 1421 (1998).

    Google Scholar 

  23. P. Layrolle and A. Lebugle, Chem. Mater. 8, 134 (1996).

    Google Scholar 

  24. B. Ben-Nissan, C. Chai, and L. Evans, in Encyclopedic Handbook of Biomaterials and Bioengineering, Part B; Applications, edited by D.L. Wise, D.J. Trantolo, D.E. Altobelli, M.J. Yaszemski, J.D. Gresser, and E.R. Schwartz (Marcel Dekker Inc., N.Y., 1995) p. 191.

    Google Scholar 

  25. A. Schleede, W. Schmidt, and H. Kindt, Elektrochem 38, 633 (1932).

    Google Scholar 

  26. G.H. Nancollas, in Biological Mineralisation, edited by G.H. Nancollas (Springer Verlag, Berlin, Germany, 1982).

    Google Scholar 

  27. T. Kanazawa and H. Monma, Kagaku-no-Ryoiki 27, 22 (1973).

    Google Scholar 

  28. T. Hattori, Y. Iwadate, and T. Kato, Adv. Ceram. Mater. 3, 426 (1988).

    Google Scholar 

  29. S. Somiya, K. Ioku, and M. Yoshimura, Mater. Sci. Forum 34-36, 71 (1988).

    Google Scholar 

  30. T. Hattori and Y. Iwadate, J. Amer. Ceram. Soc. 73, 1803 (1990).

    Google Scholar 

  31. D.L. Roy and S.K. Linnehan, Nature 247, 220 (1974).

    Google Scholar 

  32. I.H. Arita, D.S. Wilkinson, M.A. Mondragón, and V.M. Castaño, Biomater. 16, 403 (1995).

    Google Scholar 

  33. A.V. Webster, J.J. Cooper, C.J. Hampson, and P.R.C. Cubbon, Brit. Ceram. Soc. Trans. 86, 91 (1987).

    Google Scholar 

  34. E. Hayek and W. Stadlmann, Angew. Chem. 67, 327 (1955).

    Google Scholar 

  35. A Tiselius, S. Hjerten, and O. Levin, Arch. Biochem. Bio Phys. 65, 132 (1956).

    Google Scholar 

  36. M. Jarcho, C.H. Bolen, M.B, Thomas, J.F. Bobick, J.F. Kay, and R.H. Doremus, J. Mater. Sci. 11, 2027 (1976).

    Google Scholar 

  37. H. Tagai and H. Aoki, in Bioceramics Symposium 16 (University of Keele, UK, 1978).

    Google Scholar 

  38. H. Aoki, CaO-P2O5 Apatite, Japanese Patent JP 78110999, 1978.

  39. M. Jarcho, Clin. Orthop. Rel. Res. 157, 259 (1981).

    Google Scholar 

  40. K. de Groot, in Biocompatibility of Clinical Implant Materials, Vol. 1, edited by D.F. Williams (CRC Press, Boca Raton, USA, 1984), p. 199.

    Google Scholar 

  41. K. Ozaki, Preparation of hydroxyapatite as a prosthetic material, Japanese Patent JP 61295215, 1986.

  42. Y. Nakaso and H. Nakahara, Manufacture of hydroxyapatite, Japanese Patent JP 61151010, 1986.

  43. K. Hakamazuka, Manufacture of calcium phosphate-containing hydroxyapatite, Japanese Patent JP 62191410, 1987.

  44. T. Hattori, Y. Iwadate, H. Inai, K. Sato, and Y. Imai, Yogyo-Kyokai-Shi 95, 71 (1987).

    Google Scholar 

  45. W. E. Brown and L.C. Chow, A New Calcium Phosphate Water Setting Cement in Cements Research Progress-1987, edited by P.W. Brown (American Ceramic Society, Westerville, USA, 1987).

    Google Scholar 

  46. S. Inoue and A. Ono, Yogyo-Kyoka-Shi 95, 759 (1987).

    Google Scholar 

  47. O. Suzuki and Y. Masuda, Continuous manufacture of hydroxyapatite, Japanese Patent JP 63170205, 1988.

  48. K. Kamiya, T. Yoko, K. Tanaka, and Y. Fujiyama, J. Mater. Sci. 24, 827 (1989).

    Google Scholar 

  49. R. Holmes, V. Mooney, R. Bucholz, and A. Tencer, Clin. Orthop. 199, 252 (1984).

    Google Scholar 

  50. P. Layrolle, A. Ito, and T. Tateishi, Phosphorus Res. Bull. 6, 63 (1996).

    Google Scholar 

  51. C. Chai, B. Ben-Nissan, S. Pyke, and L. Evans, in Surface Modification Technologies Conference, Niigata, October 31-November 3, 1993, Sanjo, Japan.

  52. C. Chai, B. Ben-Nissan, L. Evans, and S. Pyke, in Proc. of Aust. Soc. for Biomaterials Inc. 4th Ann. Conf., January 30-February 1,1994, Holiday Inn, Coogee Beach, Sydney, A6.

  53. C. Chai, B. Ben-Nissan, S. Pyke, and L. Evans, in Surface Modification Technologies VII, edited by T.S. Suddshan, K. Ishizaki, M. Takata, and K. Kamata (Cambridge University Press, UK, 1994), p. 509.

    Google Scholar 

  54. C. Chai and B. Ben-Nissan, in Ceramic Monographs, edited by C.C. Sorrell and A.J. Ruys (Aust. Ceram. Soc. Pub., 1994), p. 66.

  55. C. Chai, B. Ben-Nissan, S. Pyke, and L. Evans, Mater. and Manuf. Process 10, 205 (1995).

    Google Scholar 

  56. B. Ben-Nissan, C.S. Chai, in Advances in Materials Science and Implant Orthopaedic Surgery, edited by R. Kossowsky and N. Kossovsky (Kluwer Academic Publishers, Netherlands, 1995), p. 265.

    Google Scholar 

  57. C. Chai, K.A. Gross, and B. Ben-Nissan, Biomaterials 19, 2291 (1998).

    Google Scholar 

  58. K.A. Gross, C.S. Chai, K. Kannangara, B. Ben-Nissan, and L. Hanley, J. Mater. Sci. Mater. Med. 9, 839 (1998).

    Google Scholar 

  59. C.S. Chai, K.A. Gross, L. Hanley, and B. Ben-Nissan, J. Aust. Ceram. Soc. 34(2), 263 (1998).

    Google Scholar 

  60. C.S. Chai, K.A. Gross, K. Kannangara, B. Ben-Nissan, L. Hanley, and P. Layrolle, in Bioceramics, Vol. 11, edited by R. LeGeros, and J. LeGeros, (Pergamon-Elsevier Sci., NY, 1998) p. 101.

    Google Scholar 

  61. C.S. Chai and B. Ben-Nissan, J. Mater. Sci. Mater. Med. 10, 465 (1999).

    Google Scholar 

  62. C.S. Chai, K.A. Gross, and B. Ben-Nissan, in Transactions of 30th International Biomaterials Symposium (San Diego, CA, USA, 1998), p. 426.

  63. J. Mason (Ed.), Multinuclear NMR (Plenum Press, NY, 1989), p. 369 and references cited therein.

    Google Scholar 

  64. P.N. Nagar, Sulfur and Silicon 79, 207 (1993).

    Google Scholar 

  65. R.M.K. Deng and K.B. Dellon, Polyhedron 12(14), 1767 (1993).

    Google Scholar 

  66. K. Trove and G. Borisov, Phosphorus and Sulfur 17, 257 (1981).

    Google Scholar 

  67. N. Muller, P.C. Lauterbur, and J.J. Goldenson, Am. Chem. Soc. 78, 3557 (1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Nissan, B., Green, D., Kannangara, G. et al. 31P NMR Studies of Diethyl Phosphite Derived Nanocrystalline Hydroxyapatite. Journal of Sol-Gel Science and Technology 21, 27–37 (2001). https://doi.org/10.1023/A:1011281826850

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011281826850

Navigation