Skip to main content
Log in

A surface modified ODS superalloy by thermal oxidation for potential implant applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In the present work attention is paid on the composition, structure and protective properties of alumina layer produced by high temperature oxidation on MA 956 superalloy (Fe-20Cr-4.5Al-0.5Ti-0.5Y2O3 (wt %)). The combination of good mechanical properties of this material and the excellent biocompatibility, the good wear and corrosion behavior of an outer α-alumina layer, limiting the release of ionic species and wear debris from the bulk material into the body-fluid environment, can make this material a candidate alloy for medical applications. Isothermal oxidation at 1100 °C in air of the alloy has led to the formation of a fine-grained, compact and adherent α-alumina scale. Oxide nodules rich in Ti, Y, Cr, and Fe were found on the top of the surface. In vitro electrochemical corrosion experiments showed good protective properties of the oxide scale. Moreover, no spallation of the alumina layer was observed. This feature is significant considering that the alumina layer has to withstand very high compressive stresses resulting from both growth and thermal stresses incorporated during cooling. © 2001 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Santavirta, D. NordstÖn, K. MetsÄrine and Y. Konttinen, Clin. Orthop. Relat. Res. 297 (1993) 100.

    Google Scholar 

  2. E. H. Lee, G. R. Rao, M. B. Lewis and L. K. Mansur, Nucl. Instr. Meth. Phys. Res. 74 (1993) 326.

    Google Scholar 

  3. G. L. Schwartz, in Proc. 38th Annual Meeting Ortho. Research Soc., New Orleans, LA, February 5–8, 1990.

    Google Scholar 

  4. O. Zywitzki, G. Hoetzsch, F. Fietzke and K. Goedicke, Surf. Coat. Technol. 82 (1996) 169.

    Google Scholar 

  5. K. Hayashi, N. Matsuguchi, K. Uenoyoma, T. Kanemaru and Y. Sugioka, J. Biomed. Mater. Res. 23 (1989) 1247.

    Google Scholar 

  6. P. Fraissinet, F. Tourenne, N. Rouquet, G. Bonel and P. Conte, J. Mater. Sci. Mater. Med. 5 (1994) 491.

    Google Scholar 

  7. J. Skogsmo, M. Halvarsson and S. Vuorinnen, Surf. Coat. Technol. 54/55 (1992) 186.

    Google Scholar 

  8. J. A. Davidson, A. K. Mishra, P. Kovacs and R. A. Poggie, Bio-Medi. Mater. Engi. 4 (1994) 231.

    Google Scholar 

  9. A. K. Mishra and J. A. Davidson, Advances in Biomaterials, 10 (1992) 111.

    Google Scholar 

  10. J. A. Davidson and A. K. Mishra in “Surface Modification Technologies V”, edited by T. S. Sudarshan and J. F. Braza, (The Institute of Materials, 1992) p. 1.

  11. J. A. Davidson, in “Ceramics in substitutive and reconstructive surgery”, edited by P. Vincenzini, Elsevier, Amsterdam (1991) p. 157.

    Google Scholar 

  12. J. A. Davidson, U.S. Patent No. 5037438, August 1991.

  13. J. A. Davidson, and A. K. Mishra, in Proc. Combined Meeting of the USA, Japan and Canada Orthopaedic Research Soc., Banff, Alberta, Canada, 1991.

  14. A. K. Mishra and J. A. Davidson, in Proc. 9th Euro. Conf. On Biomaterials, Chester, UK, 1991.

  15. V. Benezra, S. P. Mangin, M. Treska, M. Spector and L. W. Hobbs, in 24th Annual Meeting of the Society for Biomaterials, San Diego, California, USA, 1998.

  16. M. L. Escudero and J. L. GonzÁlez-Carrasco, Biomaterials 15 (1994) 1175.

    Google Scholar 

  17. M. L. Escudero, M. F. LÓpez, J. Ruiz, M. C. GarcÍa-Alonso and H. Canahua, J. Biomed. Mater. Res. 31 (1996) 313.

    Google Scholar 

  18. J. L. GonzÁlez-Carrasco, M. L. Escudero, J. Chao and M. C. GarcÍa-Alonso, Mater. Manu. Proc. 13 (1998) 431.

    Google Scholar 

  19. H. Oonishi, H. Okabe, T. Ike and E. Tsuji, Ann NY Acad. Sci. 523 (1988) 38.

    Google Scholar 

  20. J. Chao, M. C. Cristina, J. L. GonzÁlez-Carrasco and G. GonzÁlez-Doncel, Rev. Metal. Madrid 34 (1998) 211.

    Google Scholar 

  21. J. Chao, and G. GonzÁlez-Doncel, Rev. Metal. Madrid 34 (1998) 216.

    Google Scholar 

  22. J. Chao, M. C. Cristina, J. L. GonzÁlez-Carrasco and G. GonzÁlez-Doncel, in Materials for Advanced Power Engineering 1998, edited by J. Lecomte-Beckers, F. Shubert and P. J. Ennis, Forschungszentrum Jülich GmbH, Central Library, Proc. 6th Liège Conference, Vol. 5 Part II, pp. 827-834.

  23. M. C. GarcÍa-Alonso, PhD-Thesis, Universidad Autónoma de Madrid, Spain, 1997.

  24. M. C. GarcÍa-Alonso, J. L. GonzÁlez-Carrasco, M. L. Escudero and J. Chao, Oxid. Met. 53 (2000) 77.

    Google Scholar 

  25. M. Long, and H. J. Rack, Biomaterials 19 (1998) 1621.

    Google Scholar 

  26. J. A. Davidson, Clin. Orthop. Relat. Res. 294 (1993) 361.

    Google Scholar 

  27. J. E. Lemons, Surf. Coat. Technol. 103–104 (1998) 135.

    Google Scholar 

  28. J. Rieu, Clin. Mater. 12 (1993) 227.

    Google Scholar 

  29. W. J. Quadakkers, Journal de Physique IV, Colloque C9, supplement au Journal de Physique III, 3 (1993) 177.

    Google Scholar 

  30. M. F. LÓpez, A. Gutierrez, M. C. GarcÍa-Alonso and M. L. Escudero, J. Mater. Res. 13 (1998) 3411.

    Google Scholar 

  31. W. J. Quadakkers, A. Elschner, H. Holzbrecher, K. Schmidt, W. Speier and H. Nickel, Mikrochim. Acta 107 (1992) 197.

    Google Scholar 

  32. J. P. Wilber, J. R. Nicholls and M. J. Bennett, in “Microscopy of Oxidation 3”, edited by S. B. Newcomb and J. A. Little (The Institute of Materials, London, 1996) p. 207.

    Google Scholar 

  33. J. Pan, C. Leygraf, R. F. A. Jargelius-Pettersson and J. Linden, Oxid. Met. 50 (1998) 431.

    Google Scholar 

  34. M. L. Escudero, J. L. GonzÁlez-Carrasco, M. C. GarcÍa-Alonso and E. RamÍrez, Biomaterials 16 (1995) 735.

    Google Scholar 

  35. K. J. Bundy, J. Dillard and R. Luedemann, Biomaterials 14 (1993) 529.

    Google Scholar 

  36. I. Thompson, and D. Campbell, Corr. Sci. 36 (1994) 187.

    Google Scholar 

  37. M. C. GarcÍa-Alonso, M. L. Escudero, J. L. GonzÁlez-Carrasco and J. Chao, Biomaterials 21 (2000) 79.

    Google Scholar 

  38. R. J. Christensen, V. K. Tolpygo and H. J. Grabke, Acta Mater. 45 (1997) 1761.

    Google Scholar 

  39. J. P. Banks, D. D. Gohil, H. E. Evans, D. J. Holl and S. R. J. Saunders, in “Materials for Advanced Power Engineering”, D. Coutsouradis et al., Part II, (Kluwer Academic Press, The Netherlands, 1999) p. 1543.

    Google Scholar 

  40. J. Brene, Y. Zhou and L. Groh, Biomaterials 16 (1995) 239.

    Google Scholar 

  41. J. Chao, J. L. GonzÁlez-Carrasco, J. IbaÑez, M. L. Escudero and G. GonzÁlez-Doncel, Metall. Mater. Trans. 27A (1996) 3809.

    Google Scholar 

  42. J. Chao and J. IbaÑez (unpublished results).

  43. S. J. Bull, R. Kingswell and K. T. Scott, Surf. Coat. Technol. 82 (1996) 218. J. C. Schneider, in “High Tech Ceramics”, de. P. Vincenzini (Elsevier Science Publishers B.V., Amsterdam, 1987) p. 2581.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. González-Carrasco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Alonso, M.C., González-Carrasco, J.L., Pérez, P. et al. A surface modified ODS superalloy by thermal oxidation for potential implant applications. Journal of Materials Science: Materials in Medicine 12, 589–596 (2001). https://doi.org/10.1023/A:1011281425321

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011281425321

Keywords

Navigation