Skip to main content
Log in

On the Influence of Metal Alkoxides on the Epoxide Ring-Opening and Condensation Reactions of 3-Glycidoxypropyltrimethoxysilane

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The extent of the epoxide ring-opening, the formation of ethyl ether groups as one reaction product of the ring-opening and the condensation degree of RSi(O0.5)3 units in sols and gels of the system 3-glycidoxypropyltrimethoxysilane (GPTS)-1.5H2O-0.01/0.1/1.0 metal alkoxide [Si(OEt)4, Sn(OBut)4, Al(OBus)3, Al(OEtOBu)3, Ta(OEt)5, Ti(OEt)4, Zr(OBun)4] in ethanol has been examined by means of liquid- and solid-state 13C and 29Si NMR spectroscopies. The results reveal a strong epoxide ring-opening effect of Al-alkoxides in hybrid sols after 24 h reaction time and of Zr-, Ta-, Al- and Sn-alkoxides in corresponding hybrid gels already at low concentration (1 mole%). The ring-opening rate increases in sols with higher metal alkoxide concentration (10 mole%) but decreases at 50 mole% concentration of Al-, Ti- and Zr-alkoxides. The ring-opening activity of metal alkoxides in 10 mole% hybrid sols increases after 24 h reaction time in the order Si(OEt)4 < Ti(OEt)4 < Zr(OBun)4 < Ta(OEt)5, Sn(OBut)4, Al(OBus)3, Al(OEtOBu)3. The 24 h hybrid sols and gels contain considerable amounts (up to 90%) of ethyl ether groups as reaction product of the ring-opening reaction which lowers the formation of polyether bonds. The condensation degree (c.d.) of RSi(O0.5)3 units of GPTS-1.5H2O sols with 10 mole% of metal alkoxides increases up to 80% after 7 h reaction time in the order: Si(OEt)4 ≪ Sn(OBut)4 < Zr(OBun)4 < Al(OBus)3 < Al(OEtOBu)3 < Ta(OEt)5 < Ti(OEt)4. An additional increase in c.d. up to 90% follows after the thermal sol-gel transformation. Generally, maximum activity of metal alkoxides in ring-opening and condensation reactions was found in sols and gels with 10 mole% additives. The effect of water on the epoxide ring-opening and on c.d. is discussed. Furthermore, the activity of metal alkoxides is compared with corresponding nanoscaled metal oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Mogami, H. Kawashima, H.S.N. Deguchi, German Patent DE 33 35 557, 1984.

  2. H. Schmidt, J. Non-Cryst. Solids 178, 302 (1994).

    Google Scholar 

  3. R. Kasemann, H. Schmidt, and E. Wintrich, Mat. Res. Soc. Symp. Proc. 346, 915 (1994).

    Google Scholar 

  4. W. Que, Y. Zhou, Y.L. Lam, Y.C. Chan, Z. Sun, S.D. Cheng, H.P. Li, and C.H. Kam, J. Mater. Sci. Lett. 19, 1247 (2000).

    Google Scholar 

  5. H.K. Schmidt, J. Sol-Gel Technol. 8, 557 (1997).

    Google Scholar 

  6. G. Philipp and H. Schmidt, J. Non-Cryst. Solids 63, 283 (1984).

    Google Scholar 

  7. R. Kasemann, H. Schmidt, E. Arpac, and V. Gerhard, German Patent DE 43 38 361, 1995.

  8. P. Judeinstein, P.W. Oliveira, H. Krug, and H. Schmidt, Advanced Materials for Optics and Electronics 7, 123 (1997).

    Google Scholar 

  9. P.W. Oliveira, H. Krug, A. Frantzen, M. Mennig, and H. Schmidt, SPIE Proceedings 3136, 452 (1997).

    Google Scholar 

  10. M. Mennig, K. Endres, M. Schmitt, and H. Schmidt, J. Non-Cryst. Solids 218, 373 (1997).

    Google Scholar 

  11. U. Schubert, N. Hüsing, and A. Lorenz, Chem. Mater. 7, 2010 (1995).

    Google Scholar 

  12. M. Popall, H. Meyer, H. Schmidt, and J. Schulz, Mat. Res. Soc. Symp. Proc. 180, 995 (1990).

    Google Scholar 

  13. J. Livage, C. Sanchez, and F. Babonneau, in Chemistry of Advanced Materials, An Overview, edited by L.V. Interrante and M.J. Hampden-Smith (J. Wiley-VCH, 1998), New York.

    Google Scholar 

  14. M.W. Daniels and L.F. Francis, J. Colloid Interface Sci. 205, 191 (1998).

    Google Scholar 

  15. M.L. Sforca, I.V.P. Yoshida, and S.P. Nunes, J. Membr. Sci. 159, 197 (1999).

    Google Scholar 

  16. I. Gautier-Luneau, A. Mosset, J. Galy, and H. Schmidt, J. Mater. Sci. 25, 3739 (1990).

    Google Scholar 

  17. E. Bayer, K. Albert, J. Reiners, and M. Nieder, J. Chromatogr. 264, 197 (1983).

    Google Scholar 

  18. G.R. Bogart, D.E. Leyden, T.M. Wade, W. Schafer, and P.W. Carr, J. Chromatogr. 483, 209 (1989).

    Google Scholar 

  19. J.J. Pesek and M.T. Matyska, J. Chromatogr. A 687, 33 (1994).

    Google Scholar 

  20. A. Tuel, H. Hommel, A.P. Legrand, M.F. Gonnord, E. Mincsovics, and A.M. Siouffi, J. Chim. Phys. 89, 477 (1992).

    Google Scholar 

  21. M. Popall and H. Durand, Elektrochim. Acta 37, 1593 (1992).

    Google Scholar 

  22. M. Templin, U. Wiesner, and H.W. Spiess, Adv. Mater. 9, 814 (1997).

    Google Scholar 

  23. A.M. Zaper, A. Cholli, and J.L. Koenig, Polymer Sci. Technol. 27, 299 (1985).

    Google Scholar 

  24. K.W. Allen, J. Adhesion Sci. Technol. 6, 23 (1992).

    Google Scholar 

  25. H. Schmidt and B. Seiferling, Mat. Res. Soc. Symp. Proc. 73, 739 (1986).

    Google Scholar 

  26. T.J. Horr and G.D. Reynolds, J. Adhesion Sci. Technol. 11, 995 (1997).

    Google Scholar 

  27. G. Xue, J.L. Koenig, D.D. Wheeler, and H. Ishida, J. Appl. Polym. Sci. 28, 2633 (1983).

    Google Scholar 

  28. G. Tesoro and Y. Wu, J. Adhesion Sci. Technol. 5, 771 (1991).

    Google Scholar 

  29. M.P.J. Peeters, W.J.J. Wakelkamp, and A.P.M. Kentgens, J. Non-Cryst. Solids 189, 77 (1995).

    Google Scholar 

  30. L. Lan, A. Montenero, G. Gnappi, and E. Dradi, Gazz. Chim. Ital. 127, 505 (1997).

    Google Scholar 

  31. G. Odian, Principles of Polymerization (J.Wiley and Sons, New York, 1981), p. 512.

    Google Scholar 

  32. Chemistry and Technology of Epoxy Resins, edited by B. Ellis (Blackie Academic Professional, London, 1993).

    Google Scholar 

  33. G. Xue, Angew. Makromol. Chem. 151, 85 (1987).

    Google Scholar 

  34. G.A. Sigel, R.C. Domszy, and W.C. Welch, Mat. Res. Soc. Symp. Proc. 346, 135 (1994).

    Google Scholar 

  35. J. Comyn, D.P. Oxley, R.G. Pritchard, C.R. Werrett, and A.J. Kinloch, Int. J. Adhesion and Adhesives 9, 201 (1989).

    Google Scholar 

  36. M.P.J. Peeters, A.P.M. Kentgens, and I.J.M. Snijkers-Hendrickx, Mat. Res. Soc. Symp. Proc. 435, 415 (1996).

    Google Scholar 

  37. R. Wegler, Angew. Chem. 67, 582 (1955).

    Google Scholar 

  38. G. Philipp and H. Schmidt, J. Non-Cryst. Solids 82, 31 (1986).

    Google Scholar 

  39. D. Hoebbel, M. Nacken, and H. Schmidt, J. Sol-Gel Sci.Technol. 12, 169 (1998).

    Google Scholar 

  40. D. Hoebbel, M. Nacken, and H. Schmidt, J. Sol-Gel Sci.Technol. 13, 37 (1998).

    Google Scholar 

  41. M. Nacken, D. Hoebbel, and H. Schmidt, Mat. Res. Soc. Symp. Proc. 576, 221 (1999).

    Google Scholar 

  42. D. Hoebbel, M. Nacken, and H. Schmidt, J. Sol-Gel Sci.Technol. 19, 305 (2000).

    Google Scholar 

  43. E. Geiter, PhD Thesis, University of Saarland, Saarbrücken, Germany, 1997.

    Google Scholar 

  44. P. Innocenzi, G. Brusatin, M. Guglielmi, and R. Bertani, Chem. Mater. 11, 1672 (1999).

    Google Scholar 

  45. G. Xue, J.L. Koenig, H. Ishida, and D.D. Wheeler, Rubber Chem. Technol. 64, 162 (1991).

    Google Scholar 

  46. G.G. Habermehl and I. Wippermann, Z. Naturforsch. 46b, 1421 (1991).

    Google Scholar 

  47. K. Piana and U. Schubert, Chem. Mater. 6, 1504 (1994).

    Google Scholar 

  48. D.C. Bradley, R.C. Mehrotra, and D.P. Gaur, Metal Alkoxides (Academic Press, San Diego, 1978).

    Google Scholar 

  49. F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry (J. Wiley & Sons, New York, 1966).

    Google Scholar 

  50. J. Livage and M. Henry, in Ultrastructure Processing of Advanced Ceramics, edited by J.D. Mackenzie and D.R. Ulrich (J. Wiley, New York, 1988), p. 183.

    Google Scholar 

  51. M. Guglielmi and G. Carturan, J. Non-Cryst. Solids 100, 16 (1988).

    Google Scholar 

  52. J. Blanchard, F. Ribot, C. Sanchez, P. Bellot, and A. Trokiner, J. Non-Cryst. Solids 265, 83 (2000).

    Google Scholar 

  53. G.G. Christoph, C.E. Corbato, D.A. Hofmannn, and R.T. Tettenhorst, Clays and Clay Minerals 27, 81 (1979).

    Google Scholar 

  54. O. Kriz, B. Casensky, A. Lycka, J. Fusek, and S. Hermanek, J. Magn. Reson. 60, 375 (1984).

    Google Scholar 

  55. J.D. Basil and C.C. Lin, Mat. Res. Soc. Symp. Proc. 121, 49 (1988).

    Google Scholar 

  56. E.R. Pohl and F.D. Osterholtz, Polymer Sci. Technol. 27, 157 (1985).

    Google Scholar 

  57. M.W. Daniels, J. Sefcik, L.F. Francis, and A.V. McCormick, J. Colloid Interface Sci. 219, 351 (1999).

    Google Scholar 

  58. C.J. Brinker, J. Non-Cryst. Solids 100, 31 (1988).

    Google Scholar 

  59. G. Engelhardt and D. Michel, High Resolution Solid-State NMR of Silicates and Zeolites (J. Wiley & Sons, New York, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoebbel, D., Nacken, M. & Schmidt, H. On the Influence of Metal Alkoxides on the Epoxide Ring-Opening and Condensation Reactions of 3-Glycidoxypropyltrimethoxysilane. Journal of Sol-Gel Science and Technology 21, 177–187 (2001). https://doi.org/10.1023/A:1011274301896

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011274301896

Navigation