Advertisement

Applied Categorical Structures

, Volume 9, Issue 3, pp 303–310 | Cite as

An Elementary Approach to Exponential Spaces

  • Eva Lowen-Colebunders
  • Günther Richter
Article

Abstract

In 1970, Day and Kelly characterized exponential spaces by a condition (C). Eight years later, Hofmann and Lawson pointed out that this is equivalent to quasi-local compactness, i.e. every neighborhood V of a point contains a smaller one W such that any open cover of V admits a finite subcover of W. These characterizations work with topologies on topologies and may be felt to be not really elementary. This note instead offers an elementary approach which applies to quotient-reflective subcategories as well and includes a natural generalization of the compact-open topology on function spaces.

exponential object quasi local compactness function spaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adámek, J., Herrlich, H. and Strecker, G. E.: Abstract and Concrete Categories, Wiley, 1990.Google Scholar
  2. 2.
    Cagliari, F.: Cartesian objects and exponential morphisms in topology, Rend. Circ. Mat. Palermo (2) Suppl. 29 (1992), 25–40.Google Scholar
  3. 3.
    Cagliari, F. and Mantovani, S.: Preservation of topological properties under exponentiation, Topology Appl. 47 (1992), 149–159.Google Scholar
  4. 4.
    Day, B. J. and Kelly, G. M.: On topological quotient maps preserved by pullbacks or products, Proc. Cambridge Philos. Soc. 67 (1970), 553–558.Google Scholar
  5. 5.
    Dugundji, J.: Topology, Allyn and Bacon, Boston, 1970.Google Scholar
  6. 6.
    Dyckhoff, R. and Tholen, W.: Exponentiable morphisms, partial products and pullback complements, J. Pure Appl. Algebra 49 (1987), 103–116.Google Scholar
  7. 7.
    Fox, R. H.: On topologies for function spaces, Bull. Amer. Math. Soc. 51 (1943), 429–432.Google Scholar
  8. 8.
    Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. and Scott, D. S.: A Compendium of Continuous Lattices, Springer, Berlin, 1980.Google Scholar
  9. 9.
    Herrlich, H.: Topologische Reflexionen und Coreflexionen, Lecture Notes in Math. 78, Springer, Berlin, 1968.Google Scholar
  10. 10.
    Herrlich, H.: Cartesian closed topological categories, Math. Colloq. Univ. Cape Town 9 (1974), 1–16.Google Scholar
  11. 11.
    Herrlich, H.: Topologie I: Topologische Räume, Heldermann, Berlin, 1986.Google Scholar
  12. 12.
    Herrlich, H. and Strecker, G. E.: Category Theory, 2nd rev. edn, Heldermann, Berlin, 1979.Google Scholar
  13. 13.
    Hofmann, K. H. and Lawson, J. D.: The spectral theory of distributive continuous lattices, Trans. Amer. Math. Soc. 246 (1978), 285–310.Google Scholar
  14. 14.
    Isbell, J.: General function spaces, products and continuous lattices, Math. Proc. Cambridge Philos. Soc. 100 (1986), 193–205.Google Scholar
  15. 15.
    Marny, Th.: On epireflective subcategories of topological categories, Gen. Topology Appl. 10 (1979), 175–181.Google Scholar
  16. 16.
    Niefield, S. B.: Cartesianness: Topological spaces, uniform spaces and affine schemes, J. Pure Appl. Algebra 23 (1982), 147–167.Google Scholar
  17. 17.
    Schwarz, F.: Exponential objects in categories of (pre)topological spaces and their natural function spaces, C.R. Math. Rep. Acad. Sci. Canada 4 (No. 6) (1982), 321–326.Google Scholar
  18. 18.
    Ward, A. S.: Problem, in Proc. Int. Symposium Topology and its Appl., Herceg-Novi 1968, Beograd, 1969, p. 352.Google Scholar
  19. 19.
    Weck-Schwarz, S.: Cartesian closed topological and monotopological hulls: a comparison, Topology Appl. 38 (1991), 263–274.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Eva Lowen-Colebunders
    • 1
  • Günther Richter
    • 2
  1. 1.Departement WiskundeVrije Universiteit BrusselBrusselBelgium
  2. 2.Fakultät für MathematikUniversität BielefeldBielefeldGermany

Personalised recommendations