Skip to main content
Log in

Quantitative measurement of water diffusion lifetimes at a protein/DNA interface by NMR

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Hydration site lifetimes of slowly diffusing water molecules at the protein/DNA interface of the vnd/NK-2 homeodomain DNA complex were determined using novel three-dimensional NMR techniques. The lifetimes were calculated using the ratios of ROE and NOE cross-relaxation rates between the water and the protein backbone and side chain amides. This calculation of the lifetimes is based on a model of the spectral density function of the water-protein interaction consisting of three timescales of motion: fast vibrational/rotational motion, diffusion into/out of the hydration site, and overall macromolecular tumbling. The lifetimes measured ranged from approximately 400 ps to more than 5 ns, and nearly all the slowly diffusing water molecules detected lie at the protein/DNA interface. A quantitative analysis of relayed water cross-relaxation indicated that even at very short mixing times, 5 ms for ROESY and 12 ms for NOESY, relay of magnetization can make a small but detectable contribution to the measured rates. The temperature dependences of the NOE rates were measured to help discriminate direct dipolar cross-relaxation from chemical exchange. Comparison with several X-ray structures of homeodomain/DNA complexes reveals a strong correspondence between water molecules in conserved locations and the slowly diffusing water molecules detected by NMR. A homology model based on the X-ray structures was created to visualize the conserved water molecules detected at the vnd/NK-2 homeodomain DNA interface. Two chains of water molecules are seen at the right and left sides of the major groove, adjacent to the third helix of the homeodomain. Two water-mediated hydrogen bond bridges spanning the protein/DNA interface are present in the model, one between the backbone of Phe8 and a DNA phosphate, and one between the side chain of Asn51 and a DNA phosphate. The hydrogen bond bridge between Asn51 and the DNA might be especially important since the DNA contact made by the invariant Asn51 residue, seen in all known homeodomain/DNA structures, is critical for binding affinity and specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abragam, A. (1961) The Principles of Nuclear Magnetism, Clarendon Press, Oxford.

    Google Scholar 

  • Ayant, Y., Belorizky, E., Fries, P. and Rosset, J. (1977) J. Phys. (Paris), 38, 325-335.

    Google Scholar 

  • Billeter, M., Guntert, P., Luginbuhl, P. and Wüthrich, K. (1996) Cell, 85, 1057-1065.

    Google Scholar 

  • Brüschweiler, R. and Wright, P.E. (1994) Chem. Phys. Lett., 229, 75-81.

    Google Scholar 

  • Cavanagh, J. (1996) Protein NMR Spectroscopy: Principles and Practice, Academic Press, San Diego, CA.

    Google Scholar 

  • Clore, G.M., Bax, A., Wingfield, P.T. and Gronenborn, A.M. (1990) Biochemistry, 29, 5671-5676.

    Google Scholar 

  • Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J. and Bax, A. (1995) J. Biomol. NMR, 6, 277-293.

    Google Scholar 

  • Fraenkel, E., Rould, M.A., Chambers, K.A. and Pabo, C.O. (1998) J. Mol. Biol., 284, 351-357.

    Google Scholar 

  • Gruschus, J.M. and Ferretti, J.A. (1999) J. Magn. Reson., 140, 451-459.

    Google Scholar 

  • Gruschus, J.M., Tsao, D.H.H., Wang, L.-H., Nirenberg, M. and Ferretti, J.A. (1997) Biochemistry, 36, 5372-5380.

    Google Scholar 

  • Gruschus, J.M., Tsao, D.H.H., Wang, L.-H., Nirenberg, M. and Ferretti, J.A. (1999) J. Mol. Biol., 289, 529-545.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1993) J. Biomol. NMR, 3, 627-638.

    Google Scholar 

  • Halle, B. and Wennerström, J. (1981) J. Chem. Phys., 75, 1928-1943.

    Google Scholar 

  • Halle, B., Denisov, V.P. and Venu, K. (1999) In Modern Techniques in Protein NMR, Vol. 17 (Berliner, L.J. and Krishna, N.R., Eds.), Plenum, New York, NY.

    Google Scholar 

  • Jacobson, E.M., Li, P., Leon-del-Rio, A., Rosenfeld, M.G. and Aggarwal, A.K. (1997) Genes Dev., 11, 198-208.

    Google Scholar 

  • Jackson, J.D. (1962) Classical Electrodynamics, John Wiley and Sons, New York, NY.

    Google Scholar 

  • Karimi-Nejad, Y., Lohr, F., Schipper, D., Ruterjans, H. and Boelens, R. (1999) Chem. Phys. Lett., 300, 706-712.

    Google Scholar 

  • Kiihne, S. and Bryant, R.G. (2000) Biophys. J., 78, 2163-2169.

    Google Scholar 

  • Kim, S.-H., Vignale, G. and DeFacio, B. (1992) Phys. Rev., A46, 7548-7560.

    Google Scholar 

  • Kriwacki, R.B., Flanagan, J.M., Caradonna, J.P. and Prestegard, J.H. (1993) J. Am. Chem. Soc., 115, 8907-8911.

    Google Scholar 

  • La Penna, G., Fausti, S., Perico, A. and Ferretti, J.A. (2000) Biopolymers, 54, 89-103.

    Google Scholar 

  • Li, T., Jin, Y., Vershon, A.K. and Wolberger, C. (1998) Nucleic Acids Res., 26, 5707-5713.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546-4559.

    Google Scholar 

  • Melacini, G., Bonvin, A.M.J.J., Goodman, M., Boelens, R. and Kaptein, R. (2000) J. Mol. Biol., 300, 1041-1046.

    Google Scholar 

  • Otting, G., Liepinsh, E. and Wüthrich, K. (1991) Science, 254, 974-980.

    Google Scholar 

  • Otting, G. (1997) Prog. NMR Spectrosc., 31, 259-285.

    Google Scholar 

  • Passner, J.M., Ryoo, H.D., Shen, L., Mann, R.S. and Aggarwal, A.K. (1999) Nature, 397, 714-718.

    Google Scholar 

  • Phan, A.T., Leroy, J.L. and Gueron, M. (1999) J. Mol. Biol., 286, 505-519.

    Google Scholar 

  • Piper, D.E., Batchelor, A.H., Chang, C.P., Cleary, M.L. and Wolberger, C. (1999) Cell, 96, 587-592.

    Google Scholar 

  • Qian, Y.Q., Otting, G. and Wüthrich, K. (1993) J. Am. Chem. Soc., 115, 1189-1190.

    Google Scholar 

  • Tan, S. and Richmond, T.J. (1998) Nature, 391, 660-665.

    Google Scholar 

  • Tsao, D.H.H., Gruschus, J.M., Wang, L.-H., Nirenberg, M. and Ferretti, J.A. (1994) Biochemistry, 33, 15053-15060.

    Google Scholar 

  • Tsui, V., Radhakrishnan, I., Wright, P.E. and Case, D.A. (2000) J. Mol. Biol., 302, 1101-1117.

    Google Scholar 

  • Tucker-Kellogg, L., Rould, M.A., Chambers, K.A., Ades, S.E., Sauer, R.T. and Pabo, C.O. (1997) Structure, 5, 1047-1056.

    Google Scholar 

  • Wang, Y.X., Freedberg, D.I., Grzesiek, S., Torchia, D.A., Wingfield, P.T., Kaufman, J.D., Stahl, S.J., Chang, C.H. and Hodge, C.N. (1996) Biochemistry, 35, 12694-12704.

    Google Scholar 

  • Wilson, D.S., Guenther, B., Desplan, C. and Kuriyan, J. (1995) Cell, 82, 709-712.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruschus, J.M., Ferretti, J.A. Quantitative measurement of water diffusion lifetimes at a protein/DNA interface by NMR. J Biomol NMR 20, 111–126 (2001). https://doi.org/10.1023/A:1011266703693

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011266703693

Navigation