Skip to main content
Log in

Modification of Non-Hydrolytic Sol-Gel Derived Alumina by Solvent Treatments

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The effect of wetting non-hydrolytic derived alumina xerogels with water and organic solvents in the 20–70°C range on the alumina's properties was investigated. Wetting with organic solvents does not affect the alumina. However, contact with water was found to change the sharp crystallization at ∼800°C to a continuous crystallization starting at ∼450°C. Water treatment for a day at room temperature (RT) followed by second calcination decreased the surface area by 10%. This decrease in surface area is less pronounced with increasing wetting periods. On the other hand water treatment at 50–70°C followed by a second calcination resulted in a surface area increase of up to 15%. Upon water treatment the total pore volume has decreased from 0.65 (cm3/gr) to 0.48 (cm3/gr) and the average pore size decreased from 6.8 nm to 4.1 nm. The Cl content was found to be uneffected by the water treatment, remaining at ∼2.5% wt. Wetting with water at elevated temperature (70°C) accelerated the morphological changes, eliminating the crystallization peak at 800°C in one hour. A dissolution-reprecipitation mechanism is suggested to explain the results. In addition, Mass-Spectroscopy of the effluent gas during heat treatment revealed the emission of CO2 and water upon phase transition into α-Al2O3, at 1150–1300°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.K. Oberlander, in Applied Industrial Catalysis V(3), edited by B.E. Leach (Academic Press, London, 1984), p. 63.

    Google Scholar 

  2. B.E. Yoldas, J. Appl. Chem. Biotechnol. 23, 803 (1973).

    Google Scholar 

  3. C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, New York, 1990).

    Google Scholar 

  4. Y. de Hazan, G.E. Shter, Y. Cohen, C. Rottman, D. Avnir, and G.S. Grader, J. Sol-Gel Sci. Technol. 14(3), 233 (1999).

    Google Scholar 

  5. G.S. Grader, Y. de Hazan, D.B. Zhivotovskii, and G.E. Shter, J. Sol-Gel Sci. Techl. 10, 127 (1997).

    Google Scholar 

  6. S. Acosta, R. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, J. Sol-Gel Sci. Tech. 2, 25 (1994).

    Google Scholar 

  7. S. Acosta, P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, in Better Ceramics through Chemistry VI, Mater. Res. Soc. Symp. Proc. 346, 43 (1994).

    Google Scholar 

  8. S. Acosta, R.J.P. Corriu, D. Leclercq, P. Lefevre, P.H. Mutin, and A. Vioux, J. Non-Cryst. Solids 170, 234 (1994).

    Google Scholar 

  9. M. Andrianainarivelo, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, J. Mater. Chem. 7(2), 279 (1997).

    Google Scholar 

  10. M. Andrianainarivelo, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, Chem. Mater. 9(5), 1098 (1997).

    Google Scholar 

  11. M. Andrianainarivelo, R. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, J. Mater. Chem. 6(10), 1665 (1996).

    Google Scholar 

  12. J.T. Richardson, Principles of Catalyst Development (Plenum Press, New York, 1989).

    Google Scholar 

  13. S.Y. Lee and R. Aris, Catal. Rev. 27(2), 207 (1985).

    Google Scholar 

  14. J.H. de Boer, Angew. Chem. 64, 563 (1952).

    Google Scholar 

  15. L. Jacimovic, J. Stevovic, and S. Veljkovic, J. Phys. Chem. 76(24), 3625 (1972)

    Google Scholar 

  16. R.W. Maatman. P. Mahaffy, P. Hoekstra, and C. Addink, J. Catal. 23, 105 (1971).

    Google Scholar 

  17. H. Knozinger and P. Ratnasamy, Catal. Rev. 17(1), 31 (1978).

    Google Scholar 

  18. J.B. Peri, J. Phys. Chem. 69(1), 220 (1965).

    Google Scholar 

  19. D. Maret, G.M. Pajonk, and S.J. Teichner, in Spillover of Adsorbed Species, edited by G.M. Pajonk, S.J. Teichner, and J.E. Germain (Elsevier Science, Amsterdam, 1983), p. 215.

    Google Scholar 

  20. G.C. Bye and J.G. Robinson, Koll. Z., and Z. Polym. 198(1/2), 53 (1964).

    Google Scholar 

  21. J.A. Dyer, N.C. Scrivner, and S.K. Dental, Environ. Prog. 17(1), 1 (1998).

    Google Scholar 

  22. Y. de Hazan, Synthesis and characterization of alumina gel, Ph.D. Dissertation, Technion, Haifa, 1998.

  23. J.P. Brunelle, Pure & Appl. Chem. 50, 1211 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grader, G., Shter, G., Avnir, D. et al. Modification of Non-Hydrolytic Sol-Gel Derived Alumina by Solvent Treatments. Journal of Sol-Gel Science and Technology 21, 157–165 (2001). https://doi.org/10.1023/A:1011266100079

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011266100079

Navigation