Skip to main content
Log in

Bioactivity and Mechanical Properties of Polydimethylsiloxane (PDMS)-CaO-SiO2 Hybrids with Different PDMS Contents

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Much attention has been focused on the development of a new type of bioactive material with mechanical properties analogous to those of the natural bones. It has been reported that some polydimethylsiloxane (PDMS)-CaO-SiO2-TiO2 hybrids prepared by hydrolysis and polycondensation of PDMS, tetraethoxysilane (TEOS), tetraisopropyltitanate and calcium nitrate tetrahydrate show both apatite-forming ability in a simulated body fluid (SBF) and mechanical properties analogous to those of the human cancellous bones. PDMS-CaO-SiO2-TiO2 hybrids, however, released an appreciable amount of silicon into SBF, and the released amount of silicon increased with increasing TiO2 content in the examined composition. They might be unstable in body environment. In the present study, TiO2-free PDMS-CaO-SiO2 hybrids with different PDMS contents were synthesized by the sol-gel method, and their apatite-forming ability in SBF, silicon release into SBF and mechanical properties were investigated. The hybrid with PDMS/(TEOS + PDMS) weight ratio of 0.3, Ca(NO3)2/TEOS molar ratio of 0.15 and H2O/TEOS molar ratio of 2 showed high apatite-forming ability in SBF, little release of silicon into SBF as well as mechanical properties analogous to those of the human cancellous bones. This hybrid is expected to be useful as a new kind of bioactive material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.L. Hench, R.J. Splinter, W.C. Allen, and T.K. Greenlee Jr., J. Biomed. Mater. Res. Symp. 2, 117 (1971).

    Google Scholar 

  2. M. Jarcho, J.L. Kay, R.H. Gumaer, and H.P. Drobeck, J. Bioeng. 1, 79 (1977).

    Google Scholar 

  3. T. Kokubo, M. Shigematsu, Y. Nagashima, M. Tashiro, T. Nakamura, T. Yamamuro, and S. Higashi, Bull. Inst. Chem. Res., Kyoto Univ. 60, 260 (1982).

    Google Scholar 

  4. L.L. Hench and J. Wilson (Eds.), An Introduction to Bioceramics (World Scientific, Singapore, 1993), ch. 4, 6, and 9.

    Google Scholar 

  5. W.-Q. Yan, T. Nakamura, M. Kobayashi, H.-M. Kim, F. Miyaji, and T. Kokubo, J. Biomed. Mater. Res. 37, 267 (1997).

    Google Scholar 

  6. W. Bonfield, in Bioceramics: Materials Characteristic vs in Vivo Bihavior, Vol. 523, P. Duchene and L.E. Lemons (Eds.), (Annals of New York Academy of Sciences, New York, 1988), p. 173.

    Google Scholar 

  7. L.L. Hench, J. Am. Ceram, Soc. 74, 1487 (1991).

    Google Scholar 

  8. H. Schmidt, J. Non-Cryst. Solids 73, 681 (1985).

    Google Scholar 

  9. G.L. Wilkes, B. Orler, and H.-H. Huang, Polym. Prepr. 26, 300 (1985).

    Google Scholar 

  10. H.-H. Huang, B. Orler, and G.L. Wilkes, Polymer Bulletin 14, 557 (1985).

    Google Scholar 

  11. J.D. Mackenzie, Y.J. Chung, and Y. Hu, J. Non-Cryst. Solids 147 / 148, 271 (1992).

    Google Scholar 

  12. J.D. Mackenzie, J. Sol-Gel Science and Technology 2, 81 (1994).

    Google Scholar 

  13. S. Motakef, T. Suratwala, R.L. Poncone, J.M. Boulton, G. Teowee, and D.R. Uhlmann, J. Non-Cryst. Solids 178, 37 (1994).

    Google Scholar 

  14. C. Ohtsuki, T. Kokubo, and T. Yamamuro, J. Non-Cryst. Solids 143, 84 (1992).

    Google Scholar 

  15. K. Tsuru, C. Ohtsuki, A. Osaka, T. Iwamoto, and J.D. Mackenzie, J. Mater. Sci.: Mater. Med. 8, 157 (1997).

    Google Scholar 

  16. Q. Chen, F. Miyaji, T. Kokubo, and T. Nakamura, Biomaterials 20, 1127 (1999).

    Google Scholar 

  17. Q. Chen, N. Miyata, T. Kokubo, and T. Nakamura, J. Biomed. Mater. Res. 51, 605 (2000).

    Google Scholar 

  18. Q. Chen, N. Miyata, T. Kokubo, and T. Nakamura, J. Am. Ceram. Soc. submitted.

  19. Q. Chen, M. Kamitakahara, N. Miyata, T. Kokubo, and T. Nakamura, J. Sol-Gel Science and Technology 19, 101 (2000).

    Google Scholar 

  20. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, and T. Yamamuro, J. Biomed. Mater. Res. 24, 721 (1990).

    Google Scholar 

  21. T. Kokubo, Biomaterials 12, 155 (1991).

    Google Scholar 

  22. L.L. Hench, J. Am. Ceram. Soc. 74, 1487 (1991).

    Google Scholar 

  23. E.D. Lipp and A.L. Smith, in The Analytical Chemistry of Silicones, A.L. Smith (Eds.), (John Wiley & Sons, Inc., USA, 1991), p. 305.

    Google Scholar 

  24. S.B. Cho, K. Nakanishi, T. Kokubo, N. Soga, C. Ohtsuki, T. Nakamura, T. Kitsugi, and T. Yamamuro, J. Am. Ceram. Soc. 78, 1769 (1995).

    Google Scholar 

  25. L.L. Hench and J. Wilson, in An Introduction to Bioceramics, by L.L. Hench and J. Wilson (Eds.), (World Scientific, Singapore, 1993), p. 12.

    Google Scholar 

  26. P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, T. Nakamura, and T. Yamamuro, J. Am. Ceram. Soc. 75, 2094 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamitakahara, M., Kawashita, M., Miyata, N. et al. Bioactivity and Mechanical Properties of Polydimethylsiloxane (PDMS)-CaO-SiO2 Hybrids with Different PDMS Contents. Journal of Sol-Gel Science and Technology 21, 75–81 (2001). https://doi.org/10.1023/A:1011261617377

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011261617377

Navigation