Skip to main content
Log in

A new method for selecting calf pericardium for use in cardiac bioprostheses on the basis of morphological and mechanical criteria

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The durability of existing calf pericardium bioprostheses is limited by phenomena such as mechanical stress and calcification, the factors most frequently implicated in valve failure. Varying the preferred direction of the collagen fibers influences the mechanical behavior of the pericardial membrane. Given this possible variation, a strict control of the selection of the biomaterial employed in the construction of valve leaflets is essential, but a reliable method of selection has yet to be established.

This study describes the development of a new system of in vitro selection involving a hydraulic simulator that reproduces the mechanical behavior of pericardial membranes subjected to the stress of continuous flow.

By combining morphological criteria such as thickness and homogeneity with those of mechanical behavior, and by selecting paired samples from different parts of the pericardium, we obtained excellent mathematical fits. Linear regression analysis provided the mode of predicting the tensile strength in a given sample when this value had been determined in its twin. The upper zones of calf pericardium, corresponding to either right or left ventricle but at a distance from ligamentous structures, showed the best mean results at rupture (60 MPa) and permitted the most reliable prediction. The expected stress for an elongation of 30% was 1.12 MPa, as was previously observed, with a 95% confidence interval of between 1.11 and 1.14 MPa.

These trials, together with the careful selection of the pairs, should help to establish definitive selection criteria. © 2001 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. J. Schoen and C. E. Hobson. Hum. Pathol. 16 (1985) 549.

    Google Scholar 

  2. U. Bortolotti, A. Milano, A. Mazzucco, F. Guerra, M. Valente, G. Thiene, E. Talenti and V. Gallucci, Eur. J. Cardiothorac. Surg. 2 (1988) 458.

    Google Scholar 

  3. P. Bloomfield, D. J. Wheatley, R. J. Prescott and D. C. Miller, N. Engl. J. Med. 324 (1991) 573.

    Google Scholar 

  4. G. L. Grunkemeier, W. R. E. Jamieson, D. C. Miller and A. Starr, J. Thorac. Cardiovasc. Surg. 108 (1994) 709.

    Google Scholar 

  5. G. F. O. Tyers, W. R. Jamieson, A. I. Munro, E. Germann, L. H. Burr, R. T. Miyagishima and H. Ling. Ann. Thorac. Surg. 60 (1995) S464.

    Google Scholar 

  6. P. D. Kent, H. D. Tazelaar, W. D. Edwards and T. A. Orszulak. Cardiovasc. Pathol. 7 (1998) 9.

    Google Scholar 

  7. W. Vongpatanasin, L. D. Hilli and R. A. Lange, N. Engl. J. Med. 335 (1996) 407.

    Google Scholar 

  8. E. Jorge-Herrero, P. Fernandez, M. GutiÉrrez and J. L. Castillo-Olivares, Biomaterials 12 (1991) 683.

    Google Scholar 

  9. R. J. Levy, J. Heart Valve Dis. 3 (1994) 101.

    Google Scholar 

  10. F. Haziza, G. Papouin, B. Barratt-Boyes, G. Christie and R. Whitlock, J. Heart Valve Dis. 5 (1996) 35.

    Google Scholar 

  11. M. S. Sacks, C. J. Chuong and R. Moore, A.S.A.I.O.J. 40 (1994) M632.

    Google Scholar 

  12. D. M. Braile, M. J. F. Soares, D. R. S. Souza, V. D. Ramirez, S. Suzigan and M. F. Godoy, J. Heart Valve Dis. 7 (1998) 202.

    Google Scholar 

  13. E. D. Hiester and M. S. Sacks, J. Biomed. Mater. Res. 39 (1998) 207.

    Google Scholar 

  14. E. D. Hiester and M. S. Sacks, J. Biomed. Mater. Res. 39 (1998) 215.

    Google Scholar 

  15. M. S. Sacks, D. S. Smith, and E. D. Hiester, Ann. Biomed. Eng. 25 (1997) 678.

    Google Scholar 

  16. S. Timoshenko, in “Resistencia de Materiales”, vol. 1. (Spanish translation of Strength of Materials) (Espasa Calpe, Madrid. 1970) p. 163 and p. 272.

    Google Scholar 

  17. D. Simionescu, A. Simionescu and R. Deac, J. Biomed. Mater. Res. 27 (1993) 697.

    Google Scholar 

  18. A. Carrera, J. M. GarcÍa paez, J. V. GarcÍa Sestafe, E. Jorge, J. Salvador, A. CordÓn and J. L. Castillo-Olivares, J. Biomed. Mater. Res. 29 (1998) 568.

    Google Scholar 

  19. A. I. Munro, W. R. E. Jamieson, G. F. O. Tyers and E. Germann, Ann. Thorac. Surg. 60 (1995) S470.

    Google Scholar 

  20. J. A. Von Fraunhofer, R. J. Storey and B. J. Masterson, Biomaterials 9 (1988) 324.

    Google Scholar 

  21. A. Carrera San MartÍn, J. M. Garcia PÁez, E. Jorgeherrero, I. MillÁn, R. Navidad, J. V. GarcÍa Sestafe, I. Candela and J. L. Castillo-Olivares, Biomaterials 14 (1993) 76.

    Google Scholar 

  22. S. Gabbay, V. Bortolotti, R. Wasserman, S. Factor and R. W. Frater, J. Thorac. Cardiovasc. Surg. 87 (1984) 836.

    Google Scholar 

  23. J. Bustamante, J. SantamarÍ, O. Infante, P. Flores and A. Juarez, Arch. Inst. Cardiol. Mex. 66 (1996) 229.

    Google Scholar 

  24. M. Thubrikar, J. R. Skinner, J. Aouad, N. A. Finkelmeier and S. P. Nolan, J. Thorac. Cardiovasc. Surg. 84 (1982) 282.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

García Páez, J.M., Jorge-Herrero, E., Carrera, A. et al. A new method for selecting calf pericardium for use in cardiac bioprostheses on the basis of morphological and mechanical criteria. Journal of Materials Science: Materials in Medicine 12, 665–671 (2001). https://doi.org/10.1023/A:1011252022303

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011252022303

Keywords

Navigation