Skip to main content
Log in

HA and double-layer HA-P2O5/CaO glass coatings: influence of chemical composition on human bone marrow cells osteoblastic behavior

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Human osteoblastic bone marrow derived cells were cultured for 28 days onto the surface of a glass reinforced hydroxyapatite (HA) composite and a commercial type HA plasma sprayed coatings, both in the “as-received” condition and after an immersion treatment with culture medium during 21 days. Cell proliferation and differentiation were analyzed as a function of the chemical composition of the coatings and the immersion treatment.

Cell attachment, growth and differentiation of osteoblastic bone marrow cells seeded onto “as-received” plasma sprayed coatings were strongly affected by the time-dependent variation of the surface structure occurring during the first hours of culture. Initial interactions leading to higher amounts of adsorbed protein and zeta potential shifts towards negative charges appeared to result in surface structures with better biological performance. Cultures grown onto the pretreated coatings showed higher rate of cell proliferation and increased functional activity, as compared to those grown onto the corresponding “as-received” materials. However, the cell behavior was similar in the glass composite and HA coatings.

The results showed that the glass composites present better characteristics for bone cell growth and function than HA. In addition, this work also provide evidence that the biological performance of the glass composites can be modulated and improved by manipulations in the chemical composition, namely in the content of glass added to HA. © 2001 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. P. A. T. Klein, P. Patka and H. B. M. Van Der Lubbe, J. Biomed. Mater. Res. 25 (1991) 53.

    Google Scholar 

  2. J. A. Jansen, J. P. C. M. Van Der Waerden and J. G. C. Wolke, J. Mater. Sci. Mater. Med. 4 (1993) 466.

    Google Scholar 

  3. P. Frayssinet, F. Tourenne, P. Rouquet, P. Conte, C. Delga and G. Bonel, J. Mater. Sci. Mater. Med. 5 (1994) 11.

    Google Scholar 

  4. R. G. Courteney-Harris, M. V. Kayser and S. Downes, Biomaterials 16 (1995) 489.

    Google Scholar 

  5. B. Labat, A. Chanson and J. Frey, J. Biomed. Mater. Res. 29 (1995) 1397.

    Google Scholar 

  6. D. De Santis, C. Guerriero, P. F. Nocini, A. Ungersbock, G. Richards, P. Gotte and U. Armato, J. Mater. Sci. Mater. Med. 7 (1996) 21.

    Google Scholar 

  7. M. P. Ferraz, M. H. Fernandes, A. Trigo Cabral, J. D. Santos and F. J. Monteiro, J. Mater. Sci: Mater. Med. 10 (1999) 567.

    Google Scholar 

  8. M. P. Ferraz, F. J. Monteiro and J. D. Santos, J. Biomed. Mat. Res. 45 (1999) 376.

    Google Scholar 

  9. M. P. Ferraz, J. C. Knowles, I. Olsen, F. J. Monteiro and J. D. Santos, J. Biomed. Mater. Res. 1999; 47:603.

    Google Scholar 

  10. K. Anselme, P. Sharrock, P. Hardouin and M. Dard, J. Biomed. Mat. Res. 34 (1997) 247.

    Google Scholar 

  11. J. L. Oong, C. W. Prince and L. C. Lucas, J. Biomed. Mat. Res. 29 (1995) 165.

    Google Scholar 

  12. M. Gregoire, I. Orly, L.-M. Kerebel and B. Kerebel, Biol. Cell. 59 (1987) 255.

    Google Scholar 

  13. J. Morgan, K. Holtman and C. Stanford, J. Dent. Res. 74 (1995) 190.

    Google Scholar 

  14. L. Chou, J. D. Firth, V.-J. Uitto and D. M. Brunette, J. Cell. Sci. 108 (1995) 1563.

    Google Scholar 

  15. L. Chou, B. Marek and W. R. Wagner, Biomaterials 20 (1999) 977.

    Google Scholar 

  16. T. Susuki, K. Nishizawa, Y. Yokogawa, F. Nagata, Y. Kawamoto and T. Kameyama, J. Ferment. Bioeng. 81 (1996) 226.

    Google Scholar 

  17. M. Lampin, R. Warocquier-Clerout, C. Legris, M. Degrange and M. F. Sigot-Luizard, J. Biomed. Mater. Res. 36 (1997) 99.

    Google Scholar 

  18. S. Best, B. Sim, M. Kayser and S. Downes, J. Mater. Sci. Mater Med. 8 (1997).

  19. K. A. Hing, S. M. Best, K. E. Tanner, W. Bonfield and P. A. Revell, J. Mater. Sci. Mater. Med. 10 (1999) 663.

    Google Scholar 

  20. C. Maniatopoulos, J. Sodek and A. Melcher, Cell Tissue Res. 254 (1988) 317.

    Google Scholar 

  21. R. Gundle, C. J. Joyner and J. T. Triffit, Bone 16 (1995) 597.

    Google Scholar 

  22. M. H. Fernandes, M. A. Costa and G. S. Carvalho, J. Mater. Sci. Mater. Med. 8 (1997) 61.

    Google Scholar 

  23. H. TomÁs, G. S. Carvalho, M. H. Fernandes, A. P. Freire and L. M. Abrantes, J. Mater. Sci. Mater. Med. 8 (1997) 233.

    Google Scholar 

  24. M. H. Fernandes, J. Biomat. App. 14 (1999) 113.

    Google Scholar 

  25. T. J. Martin, D. M. Findlay, J. K. Heath and K. W. Ng, in “Handbook of Experimental Pharmacology”, edited by J. R. Mundy and T. J. Martin (Springer-Verlag, Berlin, 1993) p. 149.

    Google Scholar 

  26. G. S. Stein and J. B. Lian, in “Cellular and Molecular Biology of Bone”, edited by M. Noda (Academic Press Inc., Tokyo, 1993) p. 47.

    Google Scholar 

  27. M. J. Coelho, A. Trigo Cabral and M. H. Fernandes, Biomaterials (in press).

  28. M. J. Coelho and M. H. Fernandes, Biomaterials (in press).

  29. H. C. Anderson and D. C. Morris, in “Handbook of Experimental Pharmacology”, edited by J. R. Mundy and T. J. Martin (Springer-Verlag, Berlin, 1993) p. 267.

    Google Scholar 

  30. A. Krajewski, A. Piancastelli and R. Malavolti, Biomaterials 19 (1998) 637.

    Google Scholar 

  31. A. Krajewski, R. Malavolti and A. Piancastelli, Biomaterials 17 (1996) 53.

    Google Scholar 

  32. P. Ducheyne, C. S. Kim and S. R. Pollack, J. Biomed. Mater. Res. 26 (1992) 147.

    Google Scholar 

  33. T. Susuki, T. Yamamoto, M. Toriyama, K. Nishizawa, Y. Yokogawa, M. R. Mucalo, Y. Kawamoto, F. Nagata and T. Kameyama, J. Biomed. Mater. Res. 34 (1997) 507.

    Google Scholar 

  34. M. P. Ferraz, J. C. Knowles, I. Olsen, F. J. Monteiro and J. D. Santos, Biomaterials (in press).

  35. T. Kokubo, in “Bone-Bonding Biomaterals”, edited by P. Ducheyne, T. Kokubo and C. A. Blitterswijk (Reed Health-Care Communications, Leiden, The Netherlands, 1993) p. 31.

    Google Scholar 

  36. G. Daculsi, R. Z. Legeros, M. Henghebaert and I. Barbieux, Calcif. Tissue Int. 46 (1990) 20-27.

    Google Scholar 

  37. F. B. Bagambisa, U. Joos, and W. Schilli, J. Biomed. Mat. Res. 27 (1993) 1047-1055.

    Google Scholar 

  38. J. D. De Bruijn, C. A. Van Blitterswijk and J. E. Davies, J. Biomed. Mat. Res. 29 (1995) 89-99.

    Google Scholar 

  39. I. A. P. Gwynn, J. Mater. Sci. Mater Med. 5 (1994) 357-360.

    Google Scholar 

  40. E. L. Ghannam, P. Ducheyne and I. Spapiro, J. Biomed Mat. Res. 29 (1995) 359-370.

    Google Scholar 

  41. C. J. Kirkpatrick, M. Wagner, H. Kohler, F. Bittinger, M. Otto and C. L. Klein, J. Mater. Sci. Mater Med. 8 (1997) 131-141.

    Google Scholar 

  42. M. A. Lopes, J. D. Santos, F. J. Monteiro, C. Ohtsuki, A. Osaka, S. Kaneko, H. Inoue, J. Biomed. Mater. Res. (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferraz, M., Fernandes, M., Santos, J. et al. HA and double-layer HA-P2O5/CaO glass coatings: influence of chemical composition on human bone marrow cells osteoblastic behavior. Journal of Materials Science: Materials in Medicine 12, 629–638 (2001). https://doi.org/10.1023/A:1011245828046

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011245828046

Keywords

Navigation