Skip to main content
Log in

Genetic differentiation in the olive complex (Olea europaea) revealed by RAPDs and RFLPs in the rRNA genes

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

We assessed the genetic differentiation of the Mediterranean olive from its wild relatives found in different geographic areas (Mediterranean, Asia, Africa) using eighty RAPDs revealed with eight primers. Variance analysis (AMOVA) enabled us to estimate the overall genetic differentiation parameters between wild populations. Oleasters from the Near East and Turkey were discriminated from the other Mediterranean populations. Olea laperrinei, O. maroccana and O. cerasiformis were the taxa the most related to the Mediterranean olive. In contrast, O. africana was shown to be the most genetically distant taxa from the Mediterranean olive. However, we characterised hybrid trees between these two taxa. Significant trends between genetic and geographic distances were met within the subspecies cuspidata and within the Mediterranean olive. A genetic diversity gradient was observed in both subspecies europaea and cuspidata. These results are in agreement with a mechanism of differentiation by distance in the O. europaea complex, but another non-exclusive mechanism could also be gene flow between differentiated taxa. Furthermore, we characterised the discriminating power of each RAPD to recognise the different taxa using intraclass correlation coefficients. Lastly, IGS-RFLPs enabled us to assess rDNA polymorphisms on a sub-sample of individuals. On the basis of these data, a low interspecifc differentiation was found. This suggests a recent genetic divergence between the different taxa of the O. europaea complex or the occurrence of gene flow during favourable periods or because human displacements. All the olive cultivars were genetically related to the oleaster populations supporting that Mediterranean is the olive domestication area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angiolillo A., Mencuccini M. and Baldoni L. 1999. Olive genetic diversity assessed using amplified fragment length polymorphisms Theor. Appl. Genet. 98: 411-421.

    Google Scholar 

  • Baradat P. and Labbé T. 1995. OPEP: Un logiciel intégré pour l'amélioration des plantes pérennes. In Traitements statistiques des essais de sélection. Stratégies de sélection des plantes pérennes, CIRAD-CP (Ed.), pp. 303-330. Montpellier.

  • Benzécri J.P. 1973. L'analyse des données. Tome I. La Taxonomie. Eds. Dunod, Paris.

    Google Scholar 

  • Besnard G. 1999. Étude de la diversité génétique de l'olivier cultivé et de ses formes sauvages apparentées à l'aide de marqueurs moléculaires: applications pour l'identification variétale et pour la gestion des ressources génétiques. These Université Montpellier II, 174 pages.

    Google Scholar 

  • Besnard G. and Bervillé A. 2000. Multiple origins for Mediterranean olive (Olea europaea L. subsp. europaea) based upon mitochondrial DNA polymorphisms. C.R. Acad. Sci., Paris, Sér III, 323: 178-181.

    Google Scholar 

  • Besnard G., Green P.S. and Bervillé A. Taxonomic revision of the genus Olea using molecular approaches. (Submitted).

  • Besnard G., Khadari B., Villemur P. and Bervillé A. 2000. Cytoplasmic male sterility in the olive (Olea europaea L.). Theor. Appl. Genet. 100: 1018-1024.

    Google Scholar 

  • Bitonti M.B., Cozza R., Chiappetta A., Contento A., Minelli S., Ceccarelli M., Gelati M.T., Maggini F., Baldoni L. and Cionini P.G. 1999. Amount and organization of the heterochromatin in Olea europaea and related species. Heredity 83: 188-195.

    Google Scholar 

  • Browicz K. and Zielinski J. 1990. Chorology of trees and shrubs in south-west Asia and adjacent regions. Polish Scientific Publishers 7: 13-15.

    Google Scholar 

  • Chevalier A. 1948. L'origine de l'olivier cultivé et ses variations. Rev. Int. Bot. App. Agric. Trop. 28:1-25.

    Google Scholar 

  • de la Cruz M., Whitkus R., Gomez-Pompa A. and Mota-Bravo L. 1995. Origins of cacao cultivation. Nature 375: 542-543.

    Google Scholar 

  • Durham R.E. and Korban S.S. 1994. Evidence of gene introgression in apple using RAPD markers. Euphytica 79: 109-114.

    Google Scholar 

  • El Mousadik A. and Petit R.J. 1996. Chloroplast DNA phylogeography of the argan tree of Morocco. Mol. Ecol. 5: 547-555.

    Google Scholar 

  • Epperson B.K. 1990. Spatial patterns in genetic variation within plant populations. In: Brown, Clegg, Kahler & Weir (Eds.), Plant Population, Genetics, Breeding and Genetic Resources, pp. 229-277. Sinauer, Sunderland (Mass.).

  • Excoffier L., Smouse P.E. and Quattro J.M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491.

    Google Scholar 

  • Goldsbrough P.B. and Cullis C.A. 1981. Characterization of the genes for ribosomal RNA in flax. Nucleic Acids Res. 8: 4851-4855.

    Google Scholar 

  • Green P.S. and Wickens G.E. 1989. The Olea europaea complex. The Davis & Hedge Festschrift, ed. Kit Tan, pp.287-299. Edinburgh University Press.

  • Hewitt G.M. 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58: 247-276.

    Google Scholar 

  • Jeandroz S., Pugin A. and Bervillé A. 1996. Cloning and analysis of a 6.8-kb rDNA intergenic spacer region of the European ash (Fraxinus excelsior L.). Theor. Appl. Genet. 92: 1003-1008.

    Google Scholar 

  • Kabbaj A., Zeboudj F., Peltier D., Tagmount A., Tersac M., Dulieu H. and Bervillé A. 1995. Variation and phylogeny of the ribosomal DNA unit types and 5 S DNA in Petunia. Genet. Res. Crop Evol. 42: 311-325.

    Google Scholar 

  • Lashermes P., Cros J., Marmey P. and Charrier A. 1993. Use of random amplified DNA markers to analyse genetic variability and relationships of Coffea species. Genet. Res. Crop Evol. 40: 91-99.

    Google Scholar 

  • Lashermes P., Andrzejewski S., Bertrand B., Combes M.C., Dussert S., Graziosi G., Trouslot P. and Anthony F. 2000. Molecular analysis of introgressive breeding in coffee (Coffea arabica L.). Theor. Appl. Genet. 100:139-146.

    Google Scholar 

  • Lebart L., Morineau A. and Piron M. 1997. Statistique exploratoire multidimensionnelle. 2nd edition. Ed. Dunod, Paris, 439 pp.

    Google Scholar 

  • Luo H., Van Coppenolle B., Seguin M. and Boutry M. 1995. Mitochondrial DNA polymorphism and phylogenetic relationships in Hevea brasiliensis. Mol. Breed. 1: 51-63.

    Google Scholar 

  • Maley J. 1980. Les changements climatiques de la fin du Tertiaire en Afriqu: Leur conséquence sur l'apparition du Sahara et de sa végétation. In: The Sahara and the Nile, M.A.J. William & H. Faure (Eds.), pp. 63-86. AA Balkema, Rotterdam.

    Google Scholar 

  • Nei M. and Li W.H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA. 92:6720-6722.

    Google Scholar 

  • Quézel P. 1978. Analysis of the flora of Mediterranean and Sahara Africa. Ann. Mo. Bot. Gard. 65: 479-534.

    Google Scholar 

  • Quillet M.C., Madjidian N., Griveau Y., Serieys H., Tersac M., Lorieux M. and Bervillé A. 1995. Mapping genetic factors controlling pollen viability in an interspecific cross in Helianthus sect. Helianthus. Theor. Appl. Genet. 91: 1195-1202.

    Google Scholar 

  • Rogers S.O. and Bendich A.J. 1987. Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Mol. Biol. 9:509-520.

    Google Scholar 

  • Saitou N. and Nei M. 1987. The Neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.

    Google Scholar 

  • Sambrook J., Fritsch E.F. and Maniatis T. 1989. Molecular cloning. Second edition. Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Santoni S. and Bervillé A. 1992. Characterization of the nuclear ribosomal DNA units and phylogeny of Beta L. wild forms and cultivated beets. Theor. Appl. Genet. 83: 533-452.

    Google Scholar 

  • Saporta G. 1990. Probabilité, analyse des données et statistique. TECHNIP Ed., Paris, 493 pp.

    Google Scholar 

  • Shao J. and Tu D. 1995. The Jackknife and the Bootstrap. Springer Ed., New York, 516 pp.

    Google Scholar 

  • Terral J.F. and Arnold-Simard G. 1996. Beginnings of olive cultivation in Eastern Spain in relation to Holocene bioclimatic changes. Quaternary Res. 46: 176-185.

    Google Scholar 

  • Tremousaygue D., Grellet F., Delseny M., Delourme R. and Renard M. 1988. The large spacer of a nuclear ribosomal RNA gene from radish: organization and use as a probe in rapeseed breeding. Theor. Appl. Genet. 75: 298-3O4.

    Google Scholar 

  • Turrill W.B. 1951. Wild and cultivated olives.Kew Bull. 3: 437-442.

    Google Scholar 

  • Zohary D. 1994. The wild genetic resources of the cultivated olive. Acta Hort. 356: 62-65.

    Google Scholar 

  • Zohary D. and Hopf M. 1994. Domestication of plants in the Old World. Second edition. Oxford Clarendon Press, pp. 137-442.

    Google Scholar 

  • Zohary D. and Spiegel-Roy P. 1975. Beginnings of fruit growing in the Old World. Science 187: 319-327.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besnard, G., Baradat, P., Chevalier, D. et al. Genetic differentiation in the olive complex (Olea europaea) revealed by RAPDs and RFLPs in the rRNA genes. Genetic Resources and Crop Evolution 48, 165–182 (2001). https://doi.org/10.1023/A:1011239308132

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011239308132

Navigation