Journal of Biomolecular NMR

, Volume 20, Issue 1, pp 49–60 | Cite as

MUNIN: A new approach to multi-dimensional NMR spectra interpretation

  • Vladislav Yu. Orekhov
  • Ilghiz V. Ibraghimov
  • Martin Billeter
Article

Abstract

A new method, MUNIN (Multi-dimensional NMR spectra interpretation), is introduced for the automated interpretation of three-dimensional NMR spectra. It is based on a mathematical concept referred to as three-way decomposition. An NMR spectrum is decomposed into a sum of components, with each component corresponding to one or a group of peaks. Each component is defined as the direct product of three one-dimensional shapes. A consequence is reduction in dimensionality of the spectral data used in further analysis. The decomposition may be applied to frequency-domain or time-domain data, or to a mixture of these. Features of MUNIN include good resolution in crowded regions and the absence of assumptions about line shapes. Uniform sampling of time-domain data, a prerequisite for discrete Fourier transform, is not required. This opens an avenue for the processing of NMR data that do not follow oscillating behaviour, e.g. from relaxation measurements. The application of MUNIN is illustrated for a 1H-15N-NOESY-HSQC, where each component is defined as the set of all NOE peaks formed by a given amide group. As a result, the extraction of structural information simply consists of one-dimensional peak picking of the shape along the NOE-axis obtained for each amide group.

canonical decomposition 1H-15N-NOESY-HSQC non-uniform sampling PARAFAC parallel factor analysis signal processing three-way decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abergel, D. and Delsuc, M.A. (1993) THEOCHEM: J. Mol. Struct., 105, 65-70.Google Scholar
  2. Andersson, C.A. and Bro, R. (1998) Chemometrics Intell. Lab. Syst., 42, 93-103.Google Scholar
  3. Barache, D., Antoine, J.P. and Dereppe, J.M. (1997) J. Magn. Reson., 128, 1-11.Google Scholar
  4. Bretthorst, G.L. (1990) J. Magn. Reson., 88, 571-595.Google Scholar
  5. Bro, R. (1997) Chemometrics Intell. Lab. Syst., 38, 149-171.Google Scholar
  6. Carroll, J.D. and Chang, J. (1970) Psychometrica, 35, 283-319.Google Scholar
  7. Carroll, J.D. and Pruzansky, S. (1984) In Research Methods for Multimode Data Analysis (Eds, Law, H.G., Snyder, C.W., Hattie, J.A. and McDonald, R.P.), Praeger, New York, NY, pp. 372-402.Google Scholar
  8. Chylla, R.A. and Markley, J.L. (1995) J. Biomol. NMR, 5, 245-258.Google Scholar
  9. Denk, W., Baumann, R. and Wagner, G. (1986) J. Magn. Reson., 67, 617-636.Google Scholar
  10. Harshman, R.A. (1970) UCLA Working Papers in Phonetics, 16, 1-84.Google Scholar
  11. Harshman, R.A. and Lundy, M.E. (1984) In Research Methods for Multimode Data Analysis (Eds, Law, H.G., Snyder, C.W., Hattie, J.A. and McDonald, R.P.), Praeger, New York, NY, pp. 122-215.Google Scholar
  12. Henrion, R. (2000) J. Chemometr., 14, 261-274.Google Scholar
  13. Hoch, J.C. and Stern, A.S. (1996) In Encyclopedia of Nuclear Magnetic Resonance (Eds, Grant, D.M. and Harris, R.K.), John Wiley, London, pp. 2980-2988.Google Scholar
  14. Hopke, P.K., Paatero, P., Jia, H., Ross, R.T. and Harshman, R.A. (1998) Chemometrics Intell. Lab. Syst., 43, 25-42.Google Scholar
  15. Hu, H.T., De Angelis, A.A., Mandelshtam, V.A. and Shaka, A.J. (2000) J. Magn. Reson., 144, 357-366.Google Scholar
  16. Ibraghimov, I.V. (1999) In Matrix Methods and Algorithms (Ed., Tyrtyshnikov, E.E.), Inst. Comput. Mathematics RAS, Moscow, pp. 194-202.Google Scholar
  17. Karlsson, B.G., Pascher, T., Nordling, M., Arvidsson, R.H.A. and Lundberg, L.G. (1989) FEBS Lett., 246, 211-217.Google Scholar
  18. Koehl, P. (1999) Prog. NMR Spectrosc., 34, 257-299.Google Scholar
  19. Koradi, R., Billeter, M., Engeli, M., Güntert, P. and Wüthrich, K. (1998) J. Magn. Reson., 135, 288-297.Google Scholar
  20. Kotyk, J.J., Hoffman, N.G., Hutton, W.C., Bretthorst, G.L. and Ackerman, J.J.H. (1995) J. Magn. Reson., A116, 1-9.Google Scholar
  21. Kroonenberg, P.M. and Leeuw, J. (1980) Psychometrica, 45, 69-97.Google Scholar
  22. Kruskal, J.B. (1977) Linear Algebra Appl., 18, 95-138.Google Scholar
  23. Kruskal, J.B. (1989) In Multiway Data Analysis (Eds., Coppi, R. and Bolasco, S.), North-Holland Elsevier Science Publishers, Amsterdam.Google Scholar
  24. Ochs, M.F., Stoyanova, R.S., Arias-Mendoza, F. and Brown, T.R. (1999) J. Magn. Reson., 137, 161-176.Google Scholar
  25. Rouh, A., Louisjoseph, A. and Lallemand, J.Y. (1994) J. Biomol. NMR, 4, 505-518.Google Scholar
  26. Schmieder, P., Stern, A.S., Wagner, G. and Hoch, J.C. (1997) J. Magn. Reson., 125, 332-339.Google Scholar
  27. Sidiropoulos, N.D. and Bro, R. (2000) J. Chemometr., 14, 229-239.Google Scholar
  28. Steinbock, O., Neumann, B., Cage, B., Saltiel, J., Muller, S.C. and Dalal, N.S. (1997) Anal. Chem., 69, 3708-3713.Google Scholar
  29. Stilbs, P., Paulsen, K. and Griffiths, P.C. (1996) J. Phys. Chem., 100, 8180-8189.Google Scholar
  30. Stoyanova, R., Kuesel, A.C. and Brown, T.R. (1995) J. Magn. Reson., A115, 265-269.Google Scholar
  31. Tucker, L.R. (1966) Psychometrica, 31, 279-311.Google Scholar
  32. Van de Kamp, M., Canters, G.W., Wijmenga, S.S., Lommen, A., Hilbers, C.W., Nar, H., Messerschmidt, A. and Huber, R. (1992) Biochemistry, 31, 10194-10207.Google Scholar
  33. Weaver, J.B., Xu, Y.S., Healy, D.M. and Driscoll, J.R. (1992) Magn. Reson. Med., 24, 275-287.Google Scholar
  34. Windig, W. and Antalek, B. (1999) Chemometrics Intell. Lab. Syst., 46, 207-219.Google Scholar
  35. Zhang, O.W., Kay, L.E., Olivier, J.P. and Forman-Kay, J.D. (1994) J. Biomol. NMR, 4, 845-858.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Vladislav Yu. Orekhov
  • Ilghiz V. Ibraghimov
  • Martin Billeter

There are no affiliations available

Personalised recommendations