Skip to main content
Log in

Intergeneric relationships in the Australian Vitaceae: new evidence from cpDNA analysis

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Taxa related to important agricultural species are likely to contain a considerable amount of potentially valuable genetic diversity. Nevertheless, before breeding programs or gene discovery projects can be initiated it is important to understand the phylogenetic relationships between the species involved. A component of a major gene discovery project in grapes at the Centre for Plant Conservation Genetics (Southern Cross University, Australia) is directed at the discovery of novel genes in native Vitaceae. As a result a study was conducted in order to assess the phylogenetic relationships between V. vinifera and the native members of the three major Australian genera: Cayratia, Cissus and Tetrastigma. CpDNA sequence analysis (from the trnL intron) adequately resolved intergeneric relationship between the majority of the species studied and provided some useful new information on the phylogenetic relationships within the Vitaceae. This preliminary project identified two species, C. hypoglauca and C. sterculiifolia, as being closely related to V. vinifera and worthy of further in-depth investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ablett E., Seaton G., Scott K., Shelton D., Graham M.W., Baverstock P., Lee L.S. and Henry R.J. 2000. Analysis of grape ESTs: global gene expression patterns in leaf and berry. Plant Science 159: 87-95.

    Google Scholar 

  • Bentham G. 1863. Flora Australiensis, Vol. I. Reeve and Co., London.

    Google Scholar 

  • Chase M.W., Soltis D., Olmstead R.G., Morgan D., Les D.H., Mishler B., Duvall M.R., Price R.A., Hills H.G., Qiu Y-L., Kron K.A., Rettig J.H., Conti E., Palmer J.D., Manhart J.R., K.J., Michaels H.J., Kress W.J., Karol K.G., Clark W.D., Hedrén M., Gaut B.S., Jansen R.K., Kim K-J., Wimpee C.F., Smith J.F., Furnier G.R., Straus S.H., Xiang Q-Y., Plunkett G.M., Soltis P.S., Swensen S.M., Williams S.E., Gadek P.A., Quinn C.J., Eguiarte L., Golenberg E., Learn G.H., Graham S.W., Barrett S.C.H., Dayanandan S. and Albert V.A. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann. Missouri Bot. Gard. 80: 528–580.

    Google Scholar 

  • Cronquist A. 1988. The Evolution and Classification of Flowering Plants, 2nd ed. New York Botanic Garden, Bronx, NY.

    Google Scholar 

  • Fitch W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20: 406–416.

    Google Scholar 

  • Gielly L. and Taberlet P. 1994. The use of chloroplast DNA to resolve plant phylogenies: noncoding versus rbcL sequences. Mol. Biol. Evol. 11: 769–777.

    Google Scholar 

  • Gielly L. and Taberlet P. 1996. A phylogeny of the european gentians inferred from chloroplast trnL (UAA) intron sequences. Bot. J. Lin. Soc. 120: 57–75.

    Google Scholar 

  • Gielly L, Yuan Y.-M., Kupfer P. and Taberlet P. 1996. Phylogenetic use of noncoding regions in the genus Gentiana L.: chloroplast trnL (UAA) intron versus nuclear ribosomal internal transcribed spacer sequences. Mol. Phylo. Evol. 5: 460–466

    Google Scholar 

  • Jackes B.R. 1984. Revision of the Australian Vitaceae, 1. Ampelocissus Planchon. Austrobaileya 2: 81–86.

    Google Scholar 

  • Jackes B.R. 1987. Revision of the Australian Vitaceae, 2. Cayratia Juss. Austrobaileya 2: 365–379.

    Google Scholar 

  • Jackes B.R. 1988. Revision of the Australian Vitaceae, 3. Cissus L. Austrobaileya 2: 481–505.

    Google Scholar 

  • Jackes B.R. 1989a. Revision of the Australian Vitaceae, 4. Clematocissus Planchon. Austrobaileya 3: 11–102.

    Google Scholar 

  • Jackes B.R. 1989b. Revision of the Australian Vitaceae, 5. Tetrastigma (MIQ) Planchon. Austrobaileya 3: 149–158.

    Google Scholar 

  • Latiff A. 1983. Numerical analysis and classification of Malesian Vitaceae. Malays. 12: 7–13.

    Google Scholar 

  • Lawrence G.H.M. 1951. Taxonomy of vascular plants. MacMillan, New York.

    Google Scholar 

  • McDade L.A. and Moody M.L. 1999. Phylogenetic relationships among Acanthaceae: evidence from noncoding trnL-trnF chloroplast DNA sequences. Amer. J. Bot. 86: 70–80.

    Google Scholar 

  • Prance G.T. 1997. The conservation of botanical diversity. In: Maxted, N., B.V. Ford-Lloyd and J. G. Hawkes (Eds.), Plant Genetic Conservation, Chapman and Hall, London.

    Google Scholar 

  • Rees C. and Grivas J. 1997. Projection of winegrape production and winery intake to 1999–2000. ABARE Research Report 97.10, Canberra.

  • Scott K. and Playford J. 1996. A DNA extraction technique for PCR in rainforest plant species. Biotechniques 20: 974–978.

    Google Scholar 

  • Scott K., Rossetto M., Seaton G., Ablett E.M., Lee L.S. and Henry R.J. Identification of two new thaumatin-like proteins from grape berries (submitted).

  • Soltis P.S., Soltis D.E. and Chase M.W. 1999. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402: 402–404

    Google Scholar 

  • Swofford D.L. 1998. PAUP?. Phylogenetic Analysis using Parsimony (? and other methods), Version 4. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Taberlet P., Gielly L., Pautou G. and Bouvet J. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Biol. 17: 1105–1109

    Google Scholar 

  • Thompson J.D., Higgins D.G. and Gibson T.J. 1994. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.

    Google Scholar 

  • van Ham C.H.J., Hart H., Mes T.H.M. and Sandbrink J.M. 1994. Molecular evolution of noncoding regions of the chloroplast genome in the Crassulaceae and related species. Curr. Genet. 25: 558–566.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossetto, M., Jackes, B.R., Scott, K.D. et al. Intergeneric relationships in the Australian Vitaceae: new evidence from cpDNA analysis. Genetic Resources and Crop Evolution 48, 307–314 (2001). https://doi.org/10.1023/A:1011225319360

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011225319360

Navigation