Structure prediction of protein complexes by an NMR-based protein docking algorithm

Abstract

Protein docking algorithms can be used to study the driving forces and reaction mechanisms of docking processes. They are also able to speed up the lengthy process of experimental structure elucidation of protein complexes by proposing potential structures. In this paper, we are discussing a variant of the protein-protein docking problem, where the input consists of the tertiary structures of proteins A and B plus an unassigned one-dimensional 1H-NMR spectrum of the complex AB. We present a new scoring function for evaluating and ranking potential complex structures produced by a docking algorithm. The scoring function computes a `theoretical' 1H-NMR spectrum for each tentative complex structure and subtracts the calculated spectrum from the experimental one. The absolute areas of the difference spectra are then used to rank the potential complex structures. In contrast to formerly published approaches (e.g. [Morelli et al. (2000) Biochemistry, 39, 2530–2537]) we do not use distance constraints (intermolecular NOE constraints). We have tested the approach with four protein complexes whose three-dimensional structures are stored in the PDB data bank [Bernstein et al. (1977)] and whose 1H-NMR shift assignments are available from the BMRB database. The best result was obtained for an example, where all standard scoring functions failed completely. Here, our new scoring function achieved an almost perfect separation between good approximations of the true complex structure and false positives.

This is a preview of subscription content, log in to check access.

References

  1. Bernstein, F., Koetzle, T., Williams, G., Meyer Jr., E., Brice, M., Rodgers, J., Kennard, O., Shimanouchi, T. and Tasumi, M. (1977) J. Mol. Biol., 112, 535-542

    Google Scholar 

  2. Betts, M.J. and Sternberg, M.J.E. (1999) Protein Eng., 12, 271-283.

    Google Scholar 

  3. Connolly, M.L. (1986) Biopolymers, 25, 1229-1247.

    Google Scholar 

  4. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz Jr., K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W. and Kollman, P.A. (1995) J. Am. Chem. Soc., 117, 5179-5197.

    Google Scholar 

  5. Elshorst, B., Hennig, M., Foersterling, H., Diener, A., Maurer, M., Schwalbe, H., Griesinger, C., Krebs, J., Schmid, H., Vorherr, T. and Carafoli, E. (1999) Biochemistry, 38, 12320-12332.

    Google Scholar 

  6. Fischer, D., Lin, S.L., Wolfson, H.J. and Nussinov, R. (1995) J. Mol. Biol., 248, 459-477.

    Google Scholar 

  7. Haigh, C.W. and Mallion, R.B. (1972) Org. Magn. Reson., 4, 203-228.

    Google Scholar 

  8. Hoffmann, D., Kramer, B., Washio, T., Steinmetzer, T., Rarey, M. and Lengauer, T. (1999) J. Med. Chem., 42, 4422-4433.

    Google Scholar 

  9. Jackson, R.M., Gabb, H.A. and Sternberg, M.J.E. (1998) J. Mol. Biol., 276, 265-285.

    Google Scholar 

  10. Jackson, R.M. and Sternberg, M.J.E. (1995) J. Mol. Biol., 250, 258-275.

    Google Scholar 

  11. Johnson, C.E. and Bovey, F.A. (1958) Chem. Phys., 29, 1012-1030.

    Google Scholar 

  12. Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A.A., Afalo, C. and Vakser, I.A. (1992) Proc. Natl. Acad. Sci. USA, 89, 2195-2199.

    Google Scholar 

  13. Kohlbacher, O. and Lenhof, H.-P. (2000) Bioinformatics, 16, 815-824.

    Google Scholar 

  14. Lengauer, T. and Rarey, M. (1996) Curr. Opin. Struct. Biol., 6, 402-406.

    Google Scholar 

  15. Lenhof, H.-P. (1995) In: Bioinformatics: From nucleic acids and proteins to cell metabolism (Eds, Schomburg, D. and Lessel, U.), GBF Monographs Volume 18, pp. 125-139.

    Google Scholar 

  16. Lenhof, H.-P. (1997) In: Proceedings of the First Annual International Conference on Computational Molecular Biology RECOMB 97, pp. 182-191.

  17. McConnell, H.M. (1957) J. Chem. Phys., 27, 227-229.

    Google Scholar 

  18. Meyer, M., Wilson, P. and Schomburg, D. (1996) J. Mol. Biol., 264, 199-210.

    Google Scholar 

  19. Morelli, X., Dolla, A., Czjzek, M., Palma, N., Blasco, F., Krippahl, L., Moura, J.J.G. and Guerlesquin, F. (2000) Biochemistry, 39, 2530-2537.

    Google Scholar 

  20. Norel, R., Lin, S.L., Wolfson, H.J. and Nussinov, R. (1994) Biopolymers, 34, 933-940.

    Google Scholar 

  21. Osawa, M., Tokumitsu, H., Swindells, M.B., Kurihara, H., Orita, M., Shibanuma, T., Furuya, T. and Ikura, M. (1999) Nat. Struct. Biol., 6, 819-824.

    Google Scholar 

  22. Polshakov, V.I., Morgan, W.D., Birdsall, B. and Feeney, J. (1999) J. Biomol. NMR, 14, 115-122.

    Google Scholar 

  23. Rarey, M., Kramer, B., Lengauer, T. and Klebe, G. (1997) J. Mol. Biol., 261, 470-489.

    Google Scholar 

  24. Rustandi, R.R., Drohat, A.C., Baldisseri, D.M., Wilder, P.T. and Weber, D.J. (1998) Biochemistry, 37, 1951-1960.

    Google Scholar 

  25. Sandak, B., Nussinov, R. and Wolfson, H.J. (1998) J. Comput. Biol., 5, 631-654.

    Google Scholar 

  26. Seavey, B.R., Farr, E.A., Westler, W.M. and Markley, J. (1991) J. Biomol. NMR, 1, 217-236.

    Google Scholar 

  27. Shoichet, B.K. and Kuntz, I.D. (1991) J. Mol. Biol., 221, 79-102.

    Google Scholar 

  28. Sternberg, M.J.E., Gabb, H.A. and Jackson, R.M. (1998) Curr. Opin. Struct. Biol., 8, 250-256.

    Google Scholar 

  29. Totrov, M. and Abagyan, R. (1994) Nat. Struct. Biol., 1, 259-263.

    Google Scholar 

  30. Trosset, J.-Y. and Scheraga, H.A. (1999) J. Comput. Chem., 20, 412-427.

    Google Scholar 

  31. Wang, J.-M., Xu, X.-J. and Jiang, F. (1998) In: Proceedings of the Fourth Chinese Peptide Symposium (Eds, Xu, X.-J., Ye, Y.-H. and Tam, J.P.), Kluwer, Dordrecht, pp. 106-108.

    Google Scholar 

  32. Weng, Z., Vajda, S. and Delisi, C. (1996) Protein Sci., 5, 614-626.

    Google Scholar 

  33. Williamson, M.P. and Asakura, T. (1993) J. Magn. Reson., B101, 63-71.

    Google Scholar 

  34. Zhang, C., Cornette, J.L. and DeLisi, C. (1997) Protein Sci., 6, 1059-1064.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kohlbacher, O., Burchardt, A., Moll, A. et al. Structure prediction of protein complexes by an NMR-based protein docking algorithm. J Biomol NMR 20, 15–21 (2001). https://doi.org/10.1023/A:1011216130486

Download citation

  • NMR shift prediction
  • protein docking
  • structure prediction