Skip to main content

Enhancement of electrical conductivity and emission stability of oxide cathodes using Ni addition

Abstract

An investigation has been carried out into the use of conductive phase additions to enhance the conductivity and emission behavior of the oxide cathode coating as used in CRTs. Electrical and emission characteristics have been studied for various additions of filamentary nickel (Ni) added to the sprayed strontium-barium carbonate precursors prior to spray deposition, followed by conventional thermal conversion and activation processes in vacuum. The conductivity and the electronic activation energy have been studied as a function of temperature in the range 300 to 1250 K, during conversion and activation processes allowing the conduction behavior to be compared to conventional materials. The conduction behavior has been found to change as a function of heat-treatment temperature as the conduction paths develop and subsequently evolve in the microstructure of the resultant composite coating during conversion, activation and subsequent aging/service life conditions, with metallic-dominated conduction at temperatures below 850 K and pore conduction mechanisms dominating at higher temperatures. The emission characteristics immediately after conversion are impaired by the Ni addition, however, the long-term emission characteristics show improvement with the conductive phase.

This is a preview of subscription content, access via your institution.

References

  1. J. Castellano, “Display Markets: Facts and Fantasies, Electronic Information for Displays”, 98 Conference, Keynote Speeches, Pub. Society for Information Display, UK, 1998.

  2. G. Hermann and S. Wagener, in “The Oxide Coated Cathode, Vol. I” (Chapman & Hall, London, 1951).

    Google Scholar 

  3. F. Rosebury, in “Handbook of Electron Tube and Vacuum Techniques” (Addison-Wesley Publishing Company, 1965) p. 96.

  4. T. N. Chin, R. W. Cohen and M. D. Coutts, RAC Rev. 35 (1974) 520.

    Google Scholar 

  5. T. Aida, H. Tanuda, S. Sasaki, T. Yaguchi, S. Taguchi, N. Koganezawa and Y. Nonaka, J. Appl. Phys. 74 (1993) 6482.

    Google Scholar 

  6. J. A. N. Goncalves, G. M. Sadonato and C. M. Neto, Vacuum 49 (1998) 9.

    Google Scholar 

  7. D. A. Wright, Brit. J. Appl. Phys. 1 (1950) 150.

    Google Scholar 

  8. J. F. Waymouth, J. APPL. Phys. 22 (1951) 80.

    Google Scholar 

  9. J. R. Young, ibid. 23 (1952) 1129.

    Google Scholar 

  10. G. S. Higginson Brit. J. Appl. Phys. 9 (1958) 106.

    Google Scholar 

  11. W. H. Kohl, in “Handbook of Materials and Techniques for Vacuum Devices” (Reinhold Publishing Corporation, New York, 1967) p. 475.

    Google Scholar 

  12. G. Dearnaley, Thin Solid Films 3 (1969) 161.

    Google Scholar 

  13. G. A. Haas, A. Shih and R. E. Thomas, Appl. Surf. Sci. 2 (1979) 293.

    Google Scholar 

  14. A. Shih and G. A. Haas, ibid. 8 (1981) 125.

    Google Scholar 

  15. I. Arvanitidis, D. Sichen and S. Seetharaman, Light Metals (1996) 1191.

  16. T. Ohira, H. Teramoto, M. Saito and T. Shinjo, Appl. Surf. Sci.. 146 (1999) 47.

    Google Scholar 

  17. A. Shih, J. E. Yater and R. Abrams, ibid. 146 (1999) 1.

    Google Scholar 

  18. A. N. H. Al-Ajili, A. K. Ray, J. R. Travis, S. N. B. Hodgson, A. P. Baker and C. J. Goodhand, J. Mater. Sci: Mater Electron 11:6 (2000) 489.

    Google Scholar 

  19. R. C. Hughes, P. P. Coppola and H. T. Evans, J. Appl. Phys. 23 (1952) 635.

    Google Scholar 

  20. E. S. Riittner, Philips Res. Rep. 9 (1953) 184.

    Google Scholar 

  21. G. Haas and A. Shih, Appl. Surf. Sci. 8 (1981) 145.

    Google Scholar 

  22. S. N. B. Hodgson, A. P. Baker, C. J. Goodhand, P. A. M. Van Der Heide, T. Lee, A. K. Ray and A. N. H. Al-Aj Ili, ibid. 146 (1999) 79.

    Google Scholar 

  23. D. W. Maure and C. M. Pleass, Bell Syst. Tech. J. XL VI (1967) 10.

    Google Scholar 

  24. R. Loosjes and H. J. Vink, Philips Res. Rep. 4 (1949) 449.

    Google Scholar 

  25. W. Grattidge and H. John, J. Appl. Phys. 23 (1952) 1145.

    Google Scholar 

  26. E. B. Hensley ibid. 23 (1952) 1122.

    Google Scholar 

  27. M. M. El-Desoky, M. Y. Hassaan and M. H. Elkottamy, J. Mater. Sci. 9 (1998) 447.

    Google Scholar 

  28. N. B. Hannay, D. Macnair and A. H. White, J. Appl. Phy. 20 (1949) 669.

    Google Scholar 

  29. R. Forman, Phys. Res. 96 (1954) 1479.

    Google Scholar 

  30. T. B. Tomlinson, J. Appl. Phys 52 (1954) 720.

    Google Scholar 

  31. E. B. Hensley ibid. 27 (1956) 286.

    Google Scholar 

  32. G. A. G. Bennet, “Electricity and Modern Physics”, 2nd Edn. (Edward Arnold, London, 1974) p. 23.

    Google Scholar 

  33. M. Ohring, “Engineering Materials Science” (Academic Press, New York, 1995) p. 577.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Al-Ajili, A.N.H., Hodgson, S.N.B., Baker, A.P. et al. Enhancement of electrical conductivity and emission stability of oxide cathodes using Ni addition. Journal of Materials Science: Materials in Electronics 12, 99–105 (2001). https://doi.org/10.1023/A:1011202104097

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011202104097

Keywords

  • Composite Coating
  • Emission Characteristic
  • Conduction Path
  • Spray Deposition
  • Conduction Behavior