Skip to main content
Log in

Seasonal variation in stable oxygen and carbon isotope values recovered from modern lacustrine freshwater mollusks: paleoclimatological implications for sub-weekly temperature records

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

A fingernail clam (Sphaerium simile, Sphaeriidae) from Science Lake, a small watershed located in Allegany State Park, New York, USA and a zebra mussel (Dreissena polymorpha, Dreissenidae) from Keuka Lake, New York, the third largest Finger Lake of central New York, were selected to evaluate the applicability of using δ18O(CaCO3) and δ13O(CaCO3) values for sub-weekly climate records. Seasonal variation in δ18O(CaCO3) values was compared with predicted equilibrium values to test the hypothesis that lacustrine molluscs produce shell aragonite according to environmental variables. For the purpose of comparison, aragonite temperature-fractionation equations determined by Grossman& Ku (1986) and Patterson et al. (1993) were used. Sphaerium simile appears to produce δ18O(CaCO3) values predicted by Patterson et al. (1993), while Dreissena polymorpha produces δ18O(CaCO3) values in agreement with Grossman & Ku (1986). We attribute the difference to family-specific temperature-fractionation relationships. Because both types of mollusc record climate variables with a high degree of integrity, they should each serve as excellent paleoclimate proxies.

The fingernail clam collected from a small watershed exhibits higher variation about the seasonal pattern than did the zebra mussel collected from a large watershed. This is attributed to the increased sensitivity of the small watershed to storm perturbation. Analysis of fossil molluscs from such watersheds might be useful in discerning paleo-storminess.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atekwana, E. A. & R. V. Krishnamurthy, 1998. Seasonal variations of dissolved inorganic carbon and δ13C of surface waters: application of a modified gas evolution technique. J. Hydrol. 205: 265–278.

    Google Scholar 

  • Beck, W. J., J. Récy, F. Taylor, R. L. Edwards & G. Cabioch, 1997. Abrupt changes in early Holocene tropical sea surface temperature derived from coral records. Science 385: 705–707.

    Google Scholar 

  • Campana, S. E., 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188: 263–297.

    Google Scholar 

  • Casteel, R. W., 1976. Fish Remains in Archeology and Paleoenvironmental Studies. Academic Press, New York.

    Google Scholar 

  • Dettman, D. L. & K. C. Lohmann, 1993. Seasonal change in Paleogene surface water δ18O: Fresh-water bivalves of western North America. In Swart, P., K. C Lohmann, J. McKenzie & S. Savin (eds), Amer. Geophys. Union Monogr. Continental Climate Change from Isotopic Records. 78: 153–163.

  • Dettman, D. L. & K. C. Lohmann, 1995. Microsampling carbonates for stable isotope and minor element analysis; physical separation of samples on a 20 micrometer scale. J. Sed. Res. A. 65: 566–569.

    Google Scholar 

  • Dettman, D. L., A. K. Reische & K. C. Lohmann, 1999. Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (Unionidae). Geochim. et Cosmochim. Acta 63: 1049–1057.

    Google Scholar 

  • Dingman, S. L., 1972. Equilibrium temperatures of water surfaces as related to air temperature and solar radiation. Wat. Resour. Res. 8: 42–49.

    Google Scholar 

  • Edinger, J. E., D. W. Duttweiler & J. C. Geyer, 1968. The response of water temperatures to meteorological conditions. Wat. Resour. Res. 4: 1137–1143.

    Google Scholar 

  • Fastovsky, D. E., M. E. Arthur, N. H. Strater & A. Foss, 1993. Freshwater bivalves (Unionidae), disequilibrium isotopic fractionation, and temperatures. Palaios 8: 602–608.

    Google Scholar 

  • Friedman, I. & J. R. O'Neil, 1977. Compilation of stable isotope fractionation factors of geochemical interest. In Friedman, I. & J. R. O'Neil (eds), Data of Geochemistry. U.S. Geol. Surv. Washington, DC: KK1-KK12.

  • Grossman, E. L. & T.-L. Ku, 1986. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chem. Geol. 59: 59–74.

    Google Scholar 

  • Hass, H. C., 1996. Northern Europe climate variations during late Holocene: evidence from marine Skagerrak. Palaeogeog. Palaeoclim. Palaeoecol. 123: 121–145.

    Google Scholar 

  • Jones, D. S., M. A. Arthur & D. J. Allard, 1989. Sclerochronological records of temperature and growth from shells of Mercenaria mercenaria from Narragansett Bay, Rhode Island. Mar. Biol.102: 225–234.

    Google Scholar 

  • Jones, D. S. & I. R. Quitmyer, 1996. Marking time with bivalve shells: Oxygen isotopes and season of annual increment formation. Palaios 11: 340–346.

    Google Scholar 

  • Kalish, J. M., 1991. 13C and 18O isotopic disequilibria in fish otoliths: metabolic and kinetic effects. Mar. Ecol. Prog. Ser. 75: 191–203.

    Google Scholar 

  • Kim, S. & J. R. O'Neil, 1997. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim. et Cosmochim. Acta 61: 3461–3475.

    Google Scholar 

  • Klein, R. T., K. C. Lohmann & C. W. Thayer, 1996. Bivalve skeletons record sea-surface temperature and δ18O via Mg/Ca and 18O/16O ratios. Geology 24: 415–418.

    Google Scholar 

  • Krantz, D. E., D. F. Williams & D. S. Jones, 1987. Ecological and paleoenvironmental information using stable isotope profiles from living and fossil mollusks. Palaeogeog. Palaeoclim. Palaeoecol. 58: 249–266.

    Google Scholar 

  • Lamb, H. H., 1995. Climate history and the modern world, 2nd ed., London, Methuen, 433 pp.

    Google Scholar 

  • Leder, J. J., P. K. Swart, A. M. Szmant & R. E. Dodge, 1996. The origin of variations in the isotopic record of scleractinian corals: I. Oxygen. Geochim. et Cosmochim. Acta 15: 2857–2870.

    Google Scholar 

  • Linsley, B. K., R. B. Dunbar, G. M. Wellington & D. A. Mucciarone, 1994. A coral-based reconstruction of Intertropical Convergence Zone over Central America since 1707. J. Geophys. Res. 99: 9977–9994.

    Google Scholar 

  • Livingstone, D. M. & A. F. Lotter, 1998. The relationship between air and water temperatures in lakes of the Swiss Plateau: A case study with palaeolimnological implications. J. Paleolim. 19: 181–198.

    Google Scholar 

  • McCombie, A. M., 1959. Some relations between air temperatures and the surface water temperature of lakes. Limnol. Oceanogr. 41: 252–258.

    Google Scholar 

  • McConnaughey, T., 1989a. 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochim. et Cosmochim. Acta 53: 151–162.

    Google Scholar 

  • McConnaughey, T., 1989b. 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochim. et Cosmochim. Acta 53: 163–171.

    Google Scholar 

  • Michel, R. L. & T. F. Kraemer, 1995. Use of isotopic data to estimate water residence times of the Finger Lakes, New York. J. Hyrol. 164: 1–18.

    Google Scholar 

  • Neumann D., J. Borcherding & B. Jantz, 1993. Growth and seasonal reproduction of Dreissena polymorpha in the Rhine River and adjacent waters. In Nalepa, T. F. & D. W. Schloesser (eds), Zebra Mussels: Biology, Impacts, and Control. Lewis Publishers, 95–110.

  • Patterson, W. P., 1998. North American continental seasonality during the last millennium: high-resolution analysis of sagittal otoliths. Palaeogeog. Palaeoclim. Palaeoecol. 138: 271–303.

    Google Scholar 

  • Patterson, W. P., G. R. Smith & K. C. Lohmann, 1993. Continental paleothermometry and seasonality using the isotopic composition of aragonitic otoliths of freshwater fishes. In Swart, P., K. C Lohmann, J. McKenzie & S. Savin (eds) Amer. Geophys. Union Monogr. Continental Climate Change from Isotopic Records. 78: 191–202.

  • Rahimpour-Bonab, H., Y. Bone & R. Moussavi-Harami, 1997. Stable isotope aspects of modern molluscs, brachiopods, and marine cements from cool-water carbonates, Lacepede Shelf, South Australia. Geochim. et Cosmochim. Acta. 61: 207–218.

    Google Scholar 

  • Romaneck, C. S., E. L. Grossman & J. W. Morse, 1992. Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate. Geochim. et Cosmochim Acta 56: 419–430.

    Google Scholar 

  • Schwarcz, H. P., Y. Gao, S. Campana, D. Browne, M. Knyf & U. Brand, 1998. Stable carbon isotope variations in otoliths of Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 55: 1798–1806.

    Google Scholar 

  • Smith, G. R. & W. P. Patterson, 1994. Mio-Pliocene seasonality on the Snake River plain: comparison of faunal and oxygen isotopic evidence. Palaeogeog. Palaeoclim. Palaeoecol. 107: 291–302.

    Google Scholar 

  • Steuber, T., 1996. Stable isotope sclerochronology of rudist bivalves: Growth rates and late Cretaceous seasonality. Geology 24: 315–318

    Google Scholar 

  • Tanaka, N., C. Monaghan & D. M. Rye, 1986. Contribution of metabolic carbon to mollusc and barnacle shell carbonate. Nature 320: 520–523.

    Google Scholar 

  • Tarutani, T., R. N. Clayton & T. K. Mayeda, 1969. The effect of polymorphism and magnesium on oxygen isotope fractionation between calcium carbonate and water. Geochim. et Comochim. Acta 33: 987–996.

    Google Scholar 

  • Tevesz, M. J. S., E. Barrera & S. F. Schwelgien, 1996. Seasonal variation in oxygen isotope composition of two freshwater bivalves: Sphaerium striatinum and Anodonta grandis. J. Great Lakes Res. 22: 906–916.

    Google Scholar 

  • Urey, H. C., 1947. The thermodynamic properties of isotopic substances. J. Chem. Soc.: 562–581.

  • Veinott, G. I. & R. J. Cornett, 1996. Identification of annually produced opaque bands in the shell of the freshwater mussel Elliptio complananta using the seasonal cycle of δ18O. Can. J. Fish. Aquat. Sci. 53: 372–379.

    Google Scholar 

  • von Grafenstein, U., H. Erlernkeuser & P. Trimborn, 1999. Oxygen and carbon isotopes in modern fresh-water ostracod valves: assessing vital offsets and autecological effects of interest for palaeoclimate studies. Palaeogeog. Palaeoclim. Palaeoecol. 148: 133–152.

    Google Scholar 

  • Webb, M. S., 1974. Surface temperatures of Lake Erie. Wat. Resour. Res. 10:199–210.

    Google Scholar 

  • Wefer, G. & W. H. Berger, 1991. Isotope paleontology: growth and composition of extant calcareous species. Mar. Geol. 100: 207–248.

    Google Scholar 

  • Wurster, C. M., W. P. Patterson & M. M. Cheatham, 1999. Advances in computer-based microsampling of biogenic carbonates. Comp. Geosci. 25: 1155–1162.

    Google Scholar 

  • Xia, J., B. J. Haskell, D. R. Engstrom & E. Ito, 1997. Holocene climate reconstructions from tandem trace-element and stableisotope composition of ostracodes from Coldwater Lake, North Dakota, USA. J. Paleolim. 17: 85–100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wurster, C.M., Patterson, W.P. Seasonal variation in stable oxygen and carbon isotope values recovered from modern lacustrine freshwater mollusks: paleoclimatological implications for sub-weekly temperature records. Journal of Paleolimnology 26, 205–218 (2001). https://doi.org/10.1023/A:1011194011250

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011194011250

Navigation