Skip to main content
Log in

Enclosure of the Zero Set of Polynomials in Several Complex Variables

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

The zero set of one general multivariate polynomial is enclosed by unions and intersections of simple unbounded sets. Sets in which multivariate real polynomials exhibit constant sign or stay positive are found. Families of stable and unstable polynomials are explicitly given. Stability means here zero-free in the closed unit n-disk or the n-disk complement. The results achieved are discussed and illustrated by examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. D. O. Anderson, and E. I. Jury, Stability of Multidimensional Filters, IEEE Transactions on Circuits and Systems, CAS-21, 2, 1974, pp. 300–304.

    Google Scholar 

  2. W. Auzinger, and H. J. Stetter, An elimination algorithm for the computation of a system of multi-variate polynomial equations. Numerical mathematics, Singapore 1988, pp. 11–30, Internat. Schriftenreihe Numer. Math. 86, Basel: Birkhaäuser, 1988.

    Google Scholar 

  3. T. A. Bickart, and E. I. Jury, Real polynomials: a test for nonglobal non-negativity and nonglobal positivity, J. Math. Anal. Appl. 78, 1980, pp. 17–32.

    Google Scholar 

  4. F. G. Boese, On the bounded input-bounded output stability of linear, time-invariant, time-discrete, multi-input, multi-output, multivariate dynamical system, ZAMM 106, Supplement 2, 1999, pp. 335–336.

    Google Scholar 

  5. N. K. Bose, and A. R. Modarressi, General Procedure for Multivariate Polynomial Positivity Test with Control Applications, IEEE Transactions on Automatic Control, AC-21, 10, 1976, pp. 696–701.

    Google Scholar 

  6. N. K. Bose, Problems and Prospects in Multidimensional System Theory, Proceeding of the IEEE, 65, 6, 1979, pp. 824–840.

    Google Scholar 

  7. N. K. Bose, Applied Multidimensional Systems Theory, New York: Van Nostrand Reinhold Company, 1982.

    Google Scholar 

  8. B. Buchberger, A survey on the method of Groebner bases for solving problems in connection with systems of multivariate polynomials, The second RIKEN international symposium on symbolic and algebraic computation by computer, Wako-shi, 1984, pp. 69–83, Ser. Comput. Sci., 2, World Sci. Philadelphia, 1985, also in N. K. Bose, B. Buchberger, J. P. Guiver, E. W. Kamen, and H. M. Valenzuela, eds., Multidimensional System Theory, Dordrecht: Reidel, 1985, pp. 184-232.

  9. J. Canny, Generalized characteristic polynomials, J. Symbolic Comput. 9, 1990, pp. 241–250.

    Google Scholar 

  10. A. L. Cauchy, Exercises de Mathématique, in: Oeuvres (2), vol. 9, 1829.

  11. A. M. Cohen, H. Cuypers, and H. Sterk (eds.), Some Tapas of Computer Algebra, Berlin: Springer, 1999.

    Google Scholar 

  12. G. Fruchter, U. Srebro, and E. Zeheb, Conditions on the boundary of the Zero Set and Application to Stabilization of Systems with uncertainty, JMAA 161, 1991, pp. 148–175.

    Google Scholar 

  13. D. Goodman, Some stability properties of two-dimensional linear shift-invariant digital filters, IEEE Transactions on Circuits and Systems CAS-24, 4, 1977, pp. 201–208.

    Google Scholar 

  14. E. Hille, Analytic Function theory, vol. II., New York: Chelsea Publishing Company, 1962.

    Google Scholar 

  15. H. Hong, Bounds for Absolute Positiveness of Multivariate Polynomials, Report No. 97-13, Research Institute for Symbolic Computation, Linz, Austria: Johannes Kepler University, 1997.

    Google Scholar 

  16. E. I. Jury, Stability of Multidimensional Systems and Related Problems, in S. G. Tzafestas (ed.), Multidimensional Systems, Techniques and Applications, Yew York: M. Dekker, 1986, pp. 89–159.

    Google Scholar 

  17. J. H. Justice, and J. L. Shanks, Stability Criterion for N-Dimensional Digital Filters, IEEE Transactions on Automatic Control AC-18, 6, 1973, pp. 284–286.

    Google Scholar 

  18. B. Kojok, and G. Viry, Simplifications in the resolution of systems of algebraic equations, Afrika matematika, série 3, vol. 8, 1997, pp. 1–15.

    Google Scholar 

  19. D. Lazard, Résolution des systémes d'équations algébriques, Theoret. Comput. Sci. 15, 1, 1981, pp. 77–110.

    Google Scholar 

  20. W. J. Luther, and W. Otten, Verified Inclusion for Eigenvalues of the First Order PLL Equation with General Phase Detector Characteristics, Computing 52, 1994, pp. 213–232.

    Google Scholar 

  21. M. Marden, Geometry of Polynomials, Providence, R. I.: American Mathematical Society, 1966.

    Google Scholar 

  22. R. M. Mersereau, and D. E. Dudgeon, Two-Dimensional Digital Filtering, Proceedings of the IEEE, 63, 4, 1973, pp. 610–636.

    Google Scholar 

  23. A. Neumaier, Interval Methods for Systems of Equations, Cambridge: Cambridge University Press, 1990.

    Google Scholar 

  24. T. Sasaki, and M. Sasaki, A unified method for multivariate polynomial factorizations, Japan J. Indust. Appl. Math. 10, 1, 1993, pp. 21-39.

    Google Scholar 

  25. E. C. Sherbrooke, and N. M. Patrikalakis, Computation of the solutions of nonlinear polynomials systems, Computer Aided Geometric Design 10, 1993, pp. 379–405.

    Google Scholar 

  26. B. Sturmfels, Polynomial Equations and Convex Polytopes, American Math. Monthly 105, 1998, pp. 907–922.

    Google Scholar 

  27. E. Walach, and E. Zeheb, Sign Test of Multivariate Real Polynomials, IEEE Trans. Circuits Syst., vol. CAS-25, 7, 1980, pp. 619–625.

    Google Scholar 

  28. E. Zeheb, and D. Hertz, Another proof to a theorem on N-dimensional stability and its generalization, Proc. IEEE, vol. 72, pp. 745–746.

  29. E. Zerz, and W. Oberst, The Canonical Cauchy Problem for Systems of Partial Difference Equations with Constant Coefficients over the Complete r-Dimensional Integral Lattice Z r, Acta Applicandae Mathematicae 31, 1993, pp. 249–273.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boese, F.G., Luther, W.J. Enclosure of the Zero Set of Polynomials in Several Complex Variables. Multidimensional Systems and Signal Processing 12, 165–197 (2001). https://doi.org/10.1023/A:1011188813541

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011188813541

Navigation