Skip to main content
Log in

Response of alpine chironomid communities (Lake Chuna, Kola Peninsula, northwestern Russia) to atmospheric contamination

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

A short sediment core from the deepest part of an alpine lake (Lake Chuna, Kola Peninsula, northwestern Russia), covering about the past 200 yrs of sediment accumulation, was analysed for chironomid head capsule remains. The lake has been receiving acidic precipitation and heavy metals loading from the atmosphere since the 1940's. A total of 22 chironomid taxa were recorded. The most important taxa were typical elements of oligotrophic lakes, i.e.Micropsectra insignilobus, Paratanytarsus penicillatus, Stictochironomus spp. and Heterotrissocladius marcidus. Based on the cluster analyses results for the reconstructed environmental variables and chironomid communities, three developmental stages were distinguished from the lake history: (1) Natural ontogeny stage (before ~1945); (2) Initial stage of anthropogenic ontogeny (~1945-~1982); and (3) Anthropogenic ontogeny stage (~1982-~1996). During the first period, the changes in the chironomid fauna were characterized as an anthropogenically undisturbed community, with M. insignilobus dominating (46-66%). The changes during the second period reflected the initial phase of anthropogenic succession associated with the beginning of acidification and heavy metal pollution. The main species showed opposite distributional patterns in this period; the abundance of the group M. insignilobus/Stictochironomus spp. decreased, whereas the abundance of P. penicillatus/H. marcidus increased. The third period was characterized by a major shift in the faunal assemblages, from M. insignilobus to other dominant species including P. penicillatus (19-30%). The increases of Orthocladiinae relative abundance and total organic content in the uppermost sediment layers may be explained by a decrease in lake productivity. The decreases of cold-stenothermal taxa Stictochironomus spp. and M. insignilobus in the uppermost sediment layers can be explained by the global warming during the 20th century. The lake ecosystem is likely to be affected by both inputs of airborne contaminants and climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appleby, P. G. & F. Oldfield, 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5: 1–8.

    Google Scholar 

  • Brundin, L., 1949. Chironomiden und andere Bodentiere der südschwedischen Urgebirgseen. Rep. Inst. Freshw. Res. Drottningholm 30: 1–914.

    Google Scholar 

  • Brundin, L., 1956. Die bodenfaunistischen Seentypen und ihre Anwendbarkeit auf die Südhalbkugel. Rep. Inst. Freshw. Res. Drottningholm 37: 186–235.

    Google Scholar 

  • Charles, D. F., J. P. Smol & D. R. Engstrom, 1994. Paleolimnological approaches to biological monitoring. In Loeb S. L. & A. Spacie (eds), Biological Monitoring of Aquatic Systems. CRC Press, Boca Raton: 233–293.

    Google Scholar 

  • Cranston, P. S., 1982. A key to the larvae of the British Orthocladiinae (Chironomidae). Freshwat. Biol. Assoc. Sci. Publ. 45: 1–152.

    Google Scholar 

  • Dermott, R. M., J. R. M. Kelso & A. Douglas, 1986. The benthic fauna of 41 acid sensitive headwater lakes in northern central Ontario. Wat. Air Soil Pollut. 28: 283–292.

    Google Scholar 

  • Fott, J. (ed.), 1994. Limnology of Mountain Lakes. Developments in Hydrobiologia 93: 1–182.

  • Grahn, O., H. Hultberg & L. Landner, 1974. Oligotrophication-a self-accelerating process in lakes subjected to excessive supply of acid substances. Ambio 3: 93–94.

    Google Scholar 

  • Guilizzoni, P., A. Marchetto, A. Lami, N. G. Cameron, P. G. Appleby, N. L. Rose, Ø. A. Schnell, C. A. Belis, A. Giorgis & L. Guzzi, 1996. The environmental history of a mountain lake (Lago Paione Superiore, Central Alps, Italy) for the last c. 100 yrs: a multidisciplinary, palaeolimnological study. J. Paleolim. 15: 245–264.

    Google Scholar 

  • Henrikson, L., J. B. Olofsson & H. G. Oscarson, 1982. The impact of acidification on Chironomidae (Diptera) as indicated by subfossil stratification. Hydrobiologia 86: 223–229.

    Google Scholar 

  • Hendrey, G. R., K. Baalsruud, T. S. Traaen, M. Laake & G. Raddum, 1976. Acid precipitation: some hydrobiological changes. Ambio 5: 224–227.

    Google Scholar 

  • Hofmann, W., 1978. Analysis of animal microfossils from the GroBer Segeberger See (F. R. G.). Arch. Hydrobiol. 82: 316–346.

    Google Scholar 

  • Hofmann, W., 1986. Chironomid analysis. In B. E. Berglund (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley & Sons Ltd, Chichester: 715–727.

    Google Scholar 

  • Hofmann, W., 1988. The significance of chironomid analysis (Insecta: Diptera) for paleolimnological research. Palaeogeogr. Palaeoclim. Palaeoecol. 62: 501–509.

    Google Scholar 

  • Hofmann, W., 1993. Stratigraphy of subfossil Chironomidae and Ceratopogonidae (Insecta: Dipera) in late glacial littoral sediments from Lobsigensee (Swiss Plateau). Studies in the Late Quaternary of Lobsigensee 4. Rev. Paleobiol. 2: 205–209.

    Google Scholar 

  • Ivanova, M. B., 1997. On the assessment of the state of lake ecosystems under anthropogenic pressure. Biology of Inland Waters 1: 5–12.

    Google Scholar 

  • Kuhru, P. & T. Holm, 1998. Global Warming in the European North: Consequences for Arctic Environments and Communities. The Barents Sea Impact Study (BASIS). University of Lapland, Rovaniemi. 4 pp.

    Google Scholar 

  • Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolim. 18: 395–420.

    Google Scholar 

  • Masood, E., 1995. Climate panel confirms human role in warming, fights off oil states. Nature 378: 524.

    Google Scholar 

  • Moiseenko, T. I., 1997. Theoretical Bases of Critical Limit Values of Anthropogeneous Loads on Subarctic Surface Waters. Kola Science Centre, Institute of North Industrial Ecology Problems, Apatity. 262 pp.

    Google Scholar 

  • Moiseenko, T. I., V. A. Dauvalter & L. Y. Kagan, 1997. Mountain lakes as indicators of air pollution. Wat. Res. 24: 556–564.

    Google Scholar 

  • Olander, H., A. Korhola & T. Blom, 1997. Surface sediment Chironomidae (Insecta: Diptera) distributions along an ecotonal transect in subarctic Fennoscandia: developing a tool for paleotemperature reconstructions. J. Paleolim. 18: 45–59.

    Google Scholar 

  • Pankratova, V. Ya., 1970. Lichinki i kukolki komarov podsemeistva Orthocladiinae fauny SSSR (Diptera, Chironomidae = Tendipedidae) [Larvae and pupae of midges of the subfamily Orthocladiinae (Diptera, Chironomidae = Tendipedidae) of the USSR fauna, in Russian]. Opred. Faune SSSR 102: 1–343.

    Google Scholar 

  • Pankratova, V. Ya., 1977. Lichinki i kukolki komarov podsemeistv Podonominae i Tanypodinae fauny SSSR (Diptera, Chironomidae = Tendipedidae) [Larvae and pupae of midges of the subfamilies Podonominae and Tanypodinae (Diptera, Chironomidae = Tendipedidae) of the USSR fauna, in Russian]. Opred. Faune SSSR 112: 1–154.

    Google Scholar 

  • Pankratova, V. Ya., 1983. Lichinki i kukolki komarov podsemeistva Chironominae fauny SSSR (Diptera, Chironomidae = Tendipedidae) [Larvae and pupae of midges of the subfamily Chironominae (Diptera, Chironomidae = Tendipedidae) of the USSR fauna, in Russian]. Opred. Faune SSSR 134: 1–296.

    Google Scholar 

  • Prentice, I. C., 1986. Multivariate methods for data analysis. In B. E. Berglund (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley & Sons Ltd, Chichester: 775–797.

    Google Scholar 

  • Raddum, G. G. & O. A. Sæther, 1981. Chironomid communities in Norwegian lakes with different degrees of acidification. Verh. Internat. Verein. Limnol. 21: 399–405.

    Google Scholar 

  • Säwedal, L., 1982. Taxonomy, morphology, phylogenetic relationships and distribution of Micropsectra Kieffer, 1909 (Diptera: Chironomidae). Entomol. Scand. 13: 371–400.

    Google Scholar 

  • Sæther, O. A., 1975. Nearctic and Palaearctic Heterotrissocladius (Diptera: Chironomidae). Bull. Fish. Res. Board Can. 193: 1–67.

    Google Scholar 

  • Sæther, O. A., 1979. Chironomid communities as water quality indicators. Holarct. Ecol. 2: 65–74.

    Google Scholar 

  • Sæther, O. A., 1980. New name for Oliveria Sæther, 1976 (Diptera: Chironomidae) nec Oliveria Sutherland, 1965 (Cnidaria: Anthozoa), with a first record for the European continent. Ent. Scand. 11: 399–400.

    Google Scholar 

  • Schnell, Ø. A., 1998. Guidelines for the identification of chironomid larvae in the MOLAR project. NIVA report 3710–97: 1–23.

  • Schnell, Ø. A. & E. Willassen, 1996. The chironomid (Diptera) communities in two sediment cores from Store Hovvatn, S. Norway, an acidified lake. Ann. Limnol. 32: 45–61.

    Google Scholar 

  • Skogheim, O. K., 1979. Rapport fra Arungenprosjectet. Oslo, As-NLH 2: 1–7.

    Google Scholar 

  • Smith, M. J., M. G. Pellatt, I. R. Walker & R. W. Mathewes, 1998. Postglacial changes in chironomid communities and inferred climate near treeline at Mount Stoyoma, Cascade Mountains, southwestern British Columbia, Canada. J. Paleolim. 20: 277–293.

    Google Scholar 

  • Smol, J. P., I. R. Walker & P. R. Leavitt, 1991. Paleolimnology and hindcasting climatic trends. Verh. Internat. Verein. Limnol. 24: 1240–1246.

    Google Scholar 

  • Southwood, T. R. E., 1971. Ecological Methods with Particular Reference to the Study of Insect Populations. Methuen & Co., London. 391 pp.

    Google Scholar 

  • Walker, I. R., 1995. Chironomids as indicators of past environmental change. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae: Biology and Ecology of Non-Biting Midges, Chapman & Hall Ltd., London: 405–422.

    Google Scholar 

  • Walker, I. R., C. H. Fernando & C. G. Paterson, 1985. Associations of Chironomidae (Diptera) of shallow, acid, humic lakes and bog pools in Atlantic Canada, and a comparison with an earlier paleoecological investigation. Hydrobiologia 120: 11–22.

    Google Scholar 

  • Walker, I. R. & R. W. Mathewes, 1987. Chironomidae (Diptera) and postglacial climate at Marion Lake, British Columbia, Canada. Quat. Res. 27: 89–102.

    Google Scholar 

  • Walker, I. R. & R. W. Mathewes, 1989a. Early postglacial chironomid succession in southwestern British Columbia, Canada, and its paleoenvironmental significance. J. Paleolim. 2: 1–14.

    Google Scholar 

  • Walker, I. R. & R. W. Mathewes, 1989b. Chironomidae (Diptera) remains in surficial sediments from the Canadian Cordillera: analysis of the fauna across an altitudinal gradient. J. Paleolim. 2: 61–80.

    Google Scholar 

  • Walker, I. R., J. P. Smol, D. R. Engstrom & H. J. Birks, 1991. An assessment of Chironomidae as quantitative indicators of past climatic change. Can. J. Fish. Aquat. Sci. 48: 975–987.

    Google Scholar 

  • Walker, I. R. & G. M. MacDonald, 1995. Distributions of Chironomidae (Insecta: Diptera) and other freshwater midges with respect to treeline, Northwest Territories, Canada. Arct. Alp. Res. 27: 258–263.

    Google Scholar 

  • Wiederholm, T. (ed.), 1983. Chironomidae of the Holarctic Region, Keys and Diagnoses: Part 1-Larvae. Ent. Scand. Suppl. 19: 1–457.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilyashuk, B., Ilyashuk, E. Response of alpine chironomid communities (Lake Chuna, Kola Peninsula, northwestern Russia) to atmospheric contamination. Journal of Paleolimnology 25, 467–475 (2001). https://doi.org/10.1023/A:1011187520169

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011187520169

Navigation