Skip to main content
Log in

Four thousand years of atmospheric lead pollution in northern Europe: a summary from Swedish lake sediments

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

This paper presents a large palaeolimnological study of the pre-industrial and industrial history of atmospheric lead pollution deposition in Sweden. Both lead concentrations and 206Pb/207Pb ratios have been analysed in 31 lakes covering most of Sweden, plus one lake in north-west Russia. Four of the lakes have varved (annually-laminated) sediments. Isotope analysis is a sensitive and effective method to distinguish pollution lead from natural catchment lead and to detect early pollution influence, because the 206Pb/207Pb ratio in unpolluted background sediments in Sweden was > 1.3, while that of lead from pollution, derived from ores and coal, was < 1.2. The sediments show a consistent picture of past temporal changes in atmospheric lead pollution. These changes include: the first traces of pollution 3,500-3,000 yrs ago; a pollution peak in Greek-Roman Times (about 0 AD); lower lead fall-out between 400 and 900 AD; a significant and permanent increase in atmospheric lead fall-out from about 1000 AD; an increase with the Industrial revolution; a major increase following World War II; the maximum peak in the 1970s; and decreasing fall-out over the last decades. The four varved sediments provide high-resolution records of atmospheric pollution. They reveal pollution peaks about 1200 and 1530 AD which match the history of metal production in Europe. According to the varve records the lead pollution level in the late 1990s had decreased beneath the level of the 1530s. The pollution level 1200 AD was about 35% of the 1980s, when lead pollution was still near its all time high. About 50% of the total accumulated atmospheric lead pollution deposition through time was deposited in the pre-industrial period. The sediments also show a consistent picture of the geographic distribution of atmospheric lead deposition over time, with higher deposition in south Sweden and declining levels to the north, which supports the hypothesis that the main sources of pre-industrial atmospheric lead pollution in Sweden were cultural areas in mainland Europe and Great Britain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alderton, D. H. M., 1985. Sediments. In Monitoring and Assessment Research Centre, University of London (ed.), Historical monitoring. Marc Report 31: 1–86. University of London.

  • Bacon, J. R., K. C. Jones, S. P. McGrath & A. E. Johnston, 1996. Isotopic character of lead deposited from the atmosphere at a grassland site in the United Kingdom since 1860. Environ. Sci. Technol. 30: 2511–2518.

    Google Scholar 

  • Bartnicki, J., 1998. Heavy Metals Eulerian Transport Model-HMET. Model description and results. Research Report No. 65. Norwegian Meteorological Institute. Oslo, Norway.

    Google Scholar 

  • Bindler, R., M.-L., Brännvall, I. Renberg, O. Emteryd & H. Grip, 1999. Natural lead concentrations in pristine boreal forest soils and past pollution trends: a reference for critical load models. Environ. Sci. Technol. 33: 3362–3367.

    Google Scholar 

  • Blanchard, I., 1976. English lead and the international bullion crisis of the 1550s. In Coleman, D. C. & A. H. John (eds), Trade, Government and Economy in Pre-Industrial England. Weidenfeld, London: 21–44.

    Google Scholar 

  • Brännvall, M.-L., R. Bindler, O., Emteryd, M. Nilsson & I. Renberg, 1997. Stable isotope and concentration records of atmospheric lead pollution in peat and lake sediments in Sweden. Water Air Soil Pollut. 100: 243–252.

    Google Scholar 

  • Brännvall, M.-L., R. Bindler, O. Emteryd & I. Renberg, 2000. Vertical distribution of atmospheric pollution lead in Swedish boreal forest soils. Water Air Soil Pollut.

  • Brännvall, M.-L., R. Bindler, I. Renberg, O. Emteryd, J. Bartnicki & K. Billström, 1999. The Medieval metal industry was the cradle of modern large-scale atmospheric lead pollution in northern Europe. Environ. Sci. Technol. 33: 3362–3367.

    Google Scholar 

  • Brill, R. H. & J. M. Wampler, 1967. Isotope studies of ancient lead. Am. J. of Archaeol. 71: 63–77.

    Google Scholar 

  • Brown, J. S., 1962. Ore leads and isotopes. Econom. Geology 57: 673–720.

    Google Scholar 

  • Burt, R., 1995. The transformation of the non-ferrous metals industries in the seventeenth and eighteenth centuries. Econ. History Rev. 48: 23–45.

    Google Scholar 

  • Dietz, R., J. Pacyna & D. J. Thomas, 1998. Heavy metals. InAMAP, Artic monitoring and assessment program, Oslo 373–524.

  • Ek, A., S. I. Renberg. In review. Heavy metal pollution and lake acidity changes caused by one thousand years of copper mining at Falun, Central Sweden. J. Paleolim.

  • Elbaz-Poulichet, F., P. Holliger, J. M. Martin & D. Petit, 1986. Stable lead isotopes ratios in major French rivers and estuaries. Sci. Tot. Environ. 54: 61–76.

    Google Scholar 

  • Farmer, J. G., L. J. Eades, A. B. MacKenzie, A. Kirika & T. E. Bailey-Watts, 1996. Stable lead isotope record of lead pollution in Loch Lomond sediments since 1630 AD. Environ. Sci. Technol. 30: 3080–3083.

    Google Scholar 

  • Faure, G., 1986. Principles of isotope geology. John Wiley & Sons, New York.

    Google Scholar 

  • Gottfried, R. S., 1983. The Black Death: Natural and Human Disaster in Medieval Europe. Robert Hale, London.

    Google Scholar 

  • Grousset, F. E., C. R. Quétel, B. Thomas, P. Buat-Ménard, O. F. X. Donard & A. Bucher, 1994. Transient Pb isotopic signatures in the western European atmosphere. Environ. Sci. Technol. 28: 1605–1608.

    Google Scholar 

  • Grögler, N., J. Geiss, M. Grünenfelder & F. G. Houtermans, 1966. Isotopenuntersuchungen zur Bestimmung der Herkunft römischer Bleirohre und Bleibarren. Naturforschg. 21a: 1167–1172.

    Google Scholar 

  • Hong, S., J.-P. Candelone, C. C. Patterson & C. F. Boutron, 1994. Greenland ice evidence of hemispheric lead pollution two millennia ago by Greek and Roman civilisations. Science 265: 1841–1843.

    Google Scholar 

  • Hong, S., J.-P. Candelone, C. C. Patterson & C. F. Boutron, 1996. History of ancient copper smelting pollution during Roman and Medieval times recorded in Greenland ice. Science 272: 246–248.

    Google Scholar 

  • Hopper, J. F., H. B. Ross, W. T. Sturges & L. A. Barrie, 1991. Regional source discrimination of atmospheric aerosols in Europe using the isotopic composition of lead. Tellus 43B: 45–60.

    Google Scholar 

  • Horlick, G. & Y. Shao, 1993. Inductively coupled plasma-mass spectrometry for elemental analysis. In Montaser, A. & D. W. Golightly (eds), Inductively Coupled Plasmas in Analytical Atomic Spectrometry, 2nd edition. VCH, New York: 551–676.

    Google Scholar 

  • Johnson, C. E., T. G. Siccama, C. T. Driscoll, G. E. Likens & R. E. Moeller, 1995. Changes in lead biogeochemistry in response to decreasing atmospheric inputs. Ecol. Appl. 5: 813–822.

    Google Scholar 

  • Johansson, Å. & D. Rickard, 1985. Some new lead isotope determinations from the Proterozoic sulfide ores of Central Sweden. Mineral. Deposita 20: 1–7.

    Google Scholar 

  • Keinonen, M., 1992. The isotope composition of lead in man and the environment in Finland 1966–1987: isotope ratios of lead as indicators of pollutant source. Sci. Tot. Environ. 113: 251–268.

    Google Scholar 

  • Kempter, H., M. Görres & B. Frenzel, 1997. Ti and Pb concentrations in rainwater-fed bogs in Europe as indicators of past anthropogenic activities. Water Air Soil Pollut. 100: 367–377.

    Google Scholar 

  • Lindroth, S., 1955. Gruvbrytning och kopparhantering vid Stora Kopparberget intill 1800-talets början. Del I och del II. Almqvist & Wiksell, Uppsala, Sweden, 699 pp. and 454 pp. (in Swedish).

  • Martínez-Cortizas, A., X. Pontevedra-Pombal, J. C. Nóvoa Muños & García-Rodeja, 1997. Four thousand years of atmospheric Pb, Cd and Zn deposition recorded by the ombrotrophic peat bog of Penido Vello (northernwestern Spain). Water Air Soil Pollut. 100: 387–403.

    Google Scholar 

  • Martínez-Cortizas, A., X. Pontevedra-Pombal, E. García-Rodeja, J. C. Nóvoa & W. Shotyk, 1999. Mercury in a Spanish peat bog: archive of climate change and atmospheric metal deposition. Science 284: 939–942.

    Google Scholar 

  • Molenda, D., 1976. Investments in ore mining in Poland from the 13th to the 17th centuries. J. European Econ. History 5: 151–169.

    Google Scholar 

  • Monna, F., D. B. Othman & J. M. Luck, 1995. Pb isotopes and Pb, Zn and Cd concentrations in the rivers feeding a costal pond (Thau, southern France): constraints on the origin(s) and flux(es) of metals. Sci. Tot. Environ. 166: 19–34.

    Google Scholar 

  • Monna, F., J. Lancelot, I. W. Croudace, A. B. Cundy & J. T. Lewis, 1997. Pb isotopic composition of airborne particulate material from France and the southern United Kingdom: implications or Pb pollution sources in urban areas. Environ. Sci. Technol. 31: 2277–2286.

    Google Scholar 

  • Murozumi, M., T. J. Chow & C. Patterson, 1969. Chemical concentrations of pollutant lead aerosols, terrestrial dusts and sea salts in Greenland and Antarctic snow strata. Geochim. Cosmochim. Acta 33: 1247–1294.

    Google Scholar 

  • Nef, J. V., 1987. Mining and metallurgy in medieval civilisation. In Postan, M. M. & E. Miller (eds), The Cambridge Economic History of Europe II. Trade and Industry in the Middle Ages, 2nd edition. U. P. Cambridge, 691–760.

  • Nriagu, J., 1983. Lead and Lead Poisoning in Antiquity. Wiley-Interscience Publication, New York.

    Google Scholar 

  • Puchelt, H., U. Kramar, G. L. Cumming, D. Krstic, T. H. Nöltner, M. Schöttle & V. Schweikle, 1993. Anthropogenic Pb contamination of soils, southwest Germany. Appl. Geochem. 2: 71–73.

    Google Scholar 

  • Renberg, I., 1981. Improved methods for sampling, photographing and varve-counting of varved lake sediments. Boreas 10: 255–258.

    Google Scholar 

  • Renberg, I., M. Wik Persson & O. Emteryd, 1994. Pre-industrial atmospheric lead contamination detected in Swedish lake sediments. Nature 368: 323–326.

    Google Scholar 

  • Renberg, I., M.-L. Brännvall, R. Bindler & O. Emteryd, 2000. Atmospheric lead pollution history during four millennia (2000 BC-2000 AD). Ambio 29: 152–158.

    Google Scholar 

  • Rohl, B. M., 1996. Lead isotope data from the isotrace laboratory, Oxford: Archaeometry data base 2, galena from Britain and Ireland. Archaeometry 1: 165–180.

    Google Scholar 

  • Rosman, K. J. R., W. Chisholm, S. Hong, J.-P. Candelone & C. F. Boutron, 1997. Lead from Carthaginan and Roman Spanish mines isotopically identified in Greenland ice dated from 600 BC-300 AD Environ. Sci. Technol. 31: 3413–3416.

    Google Scholar 

  • Rühling, Å., E. Steinnes & T. Berg, 1996. Atmospheric Heavy Metal Deposition in Northern Europe 1995. Nord 1996: 37. Nordic Council of Ministers, Copenhagen. 46 pp.

    Google Scholar 

  • Settle, D. & C. C. Patterson, 1980. Lead in Albacore: guide to lead pollution in Americans. Science 207: 1167–1176.

    Google Scholar 

  • Shirahata, H., R. W. Elias & C. C. Patterson, 1980. Chronological variations in concentrations and isotopic compositions of anthropogenic atmospheric lead in sediments of a remote subalpine pond. Geochim. Cosmochim. Acta 44: 149–162.

    Google Scholar 

  • Shotyk, W., D. Weiss, P. G. Appleby, A. K. Cheburkin, R. Frei, M. Gloor, J. D. Kramers, S. Reese & W. O. Van der Knaap, 1998. History of Atmospheric lead deposition since 12,370 14C yr BP from a peat bog, Jura Mountains, Switzerland. Science 281: 1635–1640.

    Google Scholar 

  • Stos-Gale, Z., N. H. Gale, J. Houghton & R. Speakman, 1995. Lead isotope data from the isotrace laboratory, Oxford: Archaeometry data base 1, ores from the western Mediterranean. Archaeometry 37: 407–415.

    Google Scholar 

  • Stuiver, M. & P. J. Reimer, 1993. High-precision decadal calibration of the radiocarbon time scale, AD 1950–6000 BC. Radiocarbon 35: 215–230.

    Google Scholar 

  • Sugden, C. L., J. G. Farmer & A. B. MacKenzie, 1993. Isotopic ratios of lead in contemporary environmental material from Scotland. Environ. Geochem. Health 15: 59–65.

    Google Scholar 

  • Véron, A. J. & T. M. Church, 1997. Use of stable lead isotopes and trace metals to characterize air mass source into the eastern North Atlantic. J. Geophys. Res. 102: 28,049–28,058.

    Google Scholar 

  • Volden, T., C. Reimann, V. A. Pavlov, P. de Caritat & M. Äyräs, 1997. Overbank sediments from the surroundings of the Russian nickel mining and smelting industry on the Kola Peninsula. Environ. Geology 32: 175–185.

    Google Scholar 

  • Wedepohl, K. H., M. H. Delevaux & B. R. Doe, 1978. The potential source of lead in the Permian kupferschiefer bed of Europe and some selected Paleozoic mineral deposits in the Federal Republic of Germany. Contrib. Mineral. Petrol. 65: 273–281.

    Google Scholar 

  • Wedepohl, K. H. & A. Baumann, 1997. Isotope composition of Medieval lead glasses reflecting early silver production in Central Europe. Mineralium Deposita 32: 292–295.

    Google Scholar 

  • Weiss, D., W. Shotyk, A. K. Cheburkin, M. Gloor & S. Reese, 1997. Atmospheric lead deposition from 12400 to ca. 2000 yrs BP in a peat bog profile, Jura mountains, Switzerland. Water Air Soil Pollut. 100: 311–324.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bränvall, ML., Bindler, R., Emteryd, O. et al. Four thousand years of atmospheric lead pollution in northern Europe: a summary from Swedish lake sediments. Journal of Paleolimnology 25, 421–435 (2001). https://doi.org/10.1023/A:1011186100081

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011186100081

Navigation