International Journal of Computer Vision

, Volume 43, Issue 3, pp 167–188 | Cite as

Face Recognition Using the Discrete Cosine Transform

  • Ziad M. Hafed
  • Martin D. Levine


An accurate and robust face recognition system was developed and tested. This system exploits the feature extraction capabilities of the discrete cosine transform (DCT) and invokes certain normalization techniques that increase its robustness to variations in facial geometry and illumination. The method was tested on a variety of available face databases, including one collected at McGill University. The system was shown to perform very well when compared to other approaches.

Face recognition discrete cosine transform Karhunen-Loeve transform geometric normalization illumination normalization feature extraction data compression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed, N., Natarajan, T., and Rao, K. 1974. Discrete cosine transform. IEEE Trans. on Computers, 23(1):90-93.Google Scholar
  2. Akamatsu, S., Sasaki, T., Fukamachi, H., and Suenaga, Y. 1991. A robust face identification scheme-KL expansion of an invariant feature space. In SPIE Proc.: Intell. Robots and Computer Vision X. Algorithms and Techn., 1607:71-84.Google Scholar
  3. Belhumeur, P.N., Hespanha, J.P., and Kriegman, D.J. 1997. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEETrans. onPatt. Anal. andMach. Intel., 19(7):711-720.Google Scholar
  4. Bruce, V. 1990. Perceiving and recognizing faces. Mind and Language, 5:342-364.Google Scholar
  5. Brunelli, R. and Poggio, T. 1993. Face recognition: Features versus templates. IEEE Trans. on Patt. Anal. and Mach. Intel., 15(10):1042-1052.Google Scholar
  6. Brunelli, R. 1997. Estimation of pose and illuminant direction for face processing. Image and Vision Computing, 15(10):741-748.Google Scholar
  7. Burt, P. 1989. Multiresolution techniques for image representation, analysis, and 'smart' transmission. In SPIE Proc.: Visual Comm. and Image Proc. IV., 1199:2-15.Google Scholar
  8. Chellappa, R., Wilson, C., and Sirohey, S. 1995. Human and machine recognition of faces: A survey. In Proc. IEEE, 83(5):705-740.Google Scholar
  9. Craw, I., Tock, D., and Bennett, A. 1992. Finding face features. In Proc. 2nd Europe. Conf. on Computer Vision, pp. 92-96.Google Scholar
  10. Duda, R.O. and Hart, P.E. 1973. Pattern Classification and Scene Analysis. Wiley: New York, NY.Google Scholar
  11. Eickeler, S., Müller, S., and Rigoll, G. 2000. Recognition of JPEG compressed face images based on statistical methods. Image and Vision Computing, 18(4):279-287.Google Scholar
  12. Govindaraju, V., Srihari, S., and Sher, D. 1990. A Computational model for face location. In Proc. 3rd Int. Conf. on ComputerVision, pp. 718-721.Google Scholar
  13. Grzybowski, M. and Younger, J. 1997. Statistical methodology: III. Receiver operating characteristic (ROC) curves. Academic Emergency Medicine, 4(8):818-826.Google Scholar
  14. Hafed, Z. 1996. Illumination compensation of facial images for automatic recognition. Internal report for McGill University course 304-529A.Google Scholar
  15. Harmon, L.D. and Hunt, W.F. 1977. Automatic recognition of human face profiles. Computer Graphics and Image Proc., 6:135-156.Google Scholar
  16. Hummel, R. 1975. Histogram modification techniques. Computer Graphics and Image Proc., 4:209-224.Google Scholar
  17. Jain, A. 1989. Fundamentals of Digital Image Processing. Prentice: Englewood Cliffs, NJ.Google Scholar
  18. Jebara, T. 1996. 3DPose estimation and normalization for face recognition. Honours Thesis, McGill University, Montreal, Quebec, Canada.Google Scholar
  19. Kanade, T. 1973. Picture processing system by computer complex and recognition of human faces. Ph.D. Thesis, Department of Information Science, Kyoto University, Japan.Google Scholar
  20. Kelly, M. 1970.Visual identification of people by computer. Stanford AI Proj., Stanford, CA, Tech. Rep. AI-130.Google Scholar
  21. Kirby, M. and Sirvoich, L. 1990. Application of the Karhunen-Loeve procedure for the characterization of human faces. IEEE Trans. on Patt. Anal. and Machine Intell., 12:103-108.Google Scholar
  22. Lades, M., Vorbruggen, J., Buhmann, J., Lange, J., von der Malsburg, C., and Wurtz, R. 1993. Distortion invariant object recognition in the dynamic link architecture. IEEE Trans. on Computers, 42:300-311.Google Scholar
  23. Oppenheim, A. and Schafer, R. 1989. Discrete-Time Signal Processing. Prentice: Englewood Cliffs, NJ.Google Scholar
  24. Pennebaker, W. and Mitchell, J. 1993. JPEG: Still Image Data Compression Standard. VNR: New York, NY.Google Scholar
  25. Pentland, A., Moghaddam, B., Starner, T., and Turk, M. 1994. Viewbased and modular eigenspaces for recognition. In Proc. IEEE Computer Soc. Conf. On Computer Vision and Patt. Recog., pp. 84-91.Google Scholar
  26. Perrett, D., Mistlin, A., and Chitty, A. 1987. Visual neurons responsive to faces. Trends in Neuroscience, 10:358-363.Google Scholar
  27. Phillips, P., Rauss, P., and Der, S. 1996. FERET (Face recognition technology) recognition algorithm development and test results. Army Research Laboratory, Adelphi, MD, Tech. Rep. ARL-TR-995.Google Scholar
  28. Pratt, W. 1991. Digital Image Processing. 2nd edition. Wiley: New York, NY.Google Scholar
  29. Rao, K. and Yip, P. 1990. Discrete Cosine Transform-Algorithms, Advantages, Applications. Academic: New York, NY.Google Scholar
  30. Rosenfeld, A. and Kak, A. 1976. Digital Picture Processing. Academic: New York, NY.Google Scholar
  31. Sakai, T., Nagao, M., and Fujibayashi, S. 1969. Line extraction and pattern recognition in a photograph. Patt. Recog., 1:233-248.Google Scholar
  32. Sekuler, R. and Blake, R. 1994. Perception. 3rd edition. McGraw-Hill: New York, NY.Google Scholar
  33. Shepherd, J. 1985. An interactive computer system for retrieving faces. In Aspects of Face Processing, H.D. Ellis, M.A. Jeeves, F. Newcombe, and A. Young (Eds.). Nijhoff: Dordrecht, pp. 398-409.Google Scholar
  34. Shneier, M. and Abdel-Mottaleb, M. 1996. Exploiting the JPEG compression scheme for image retrieval. IEEE Trans. on Patt. Anal. and Mach. Intell., 18(8):849-853.Google Scholar
  35. Silvester, P. 1993. Data Structures for Engineering Software. Computational Mechanics: Southampton.Google Scholar
  36. Swets, D. and Weng, J. 1996. Using discriminant eigenfeatures for image retrieval. IEEE Trans. on Patt. Anal. and Mach. Intell., 18(8):831-836.Google Scholar
  37. Turk, M. and Pentland, A. 1991. Face recognition using eigenfaces. In Proc. Int. Conf. on Comp. Vision and Patt. Recog. (CVPR'91), pp. 586-591.Google Scholar
  38. Wang, Z. 1984. Fast algorithms for the discreteWtransform and for the discrete fourier transform. IEEE Trans. Acoust., Speech, and Signal Proc., 32:803-816.Google Scholar
  39. Wiskott, L. and von der Malsburg, C. 1995. Recognizing face by dynamic link matching. In Proc. ICANN'95, pp. 347-352.Google Scholar
  40. Yuille, A., Cohen, D., and Hallinan, P. 1989. Feature extraction from faces using deformable templates. In Proc. IEEE Computer Soc. Conf. on Computer Vision and Patt. Recog., pp. 104-109.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Ziad M. Hafed
    • 1
  • Martin D. Levine
    • 1
  1. 1.Center for Intelligent MachinesMcGill UniversityMontrealCanada

Personalised recommendations