Skip to main content
Log in

The Effect of Dansyl-Modified β-Cyclodextrin on the Chaperone Activity of Heat Shock Proteins

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

The effect of dansyl modified β-cyclodextrin (1)on the chaperone activity of heat shock proteins such as HSP70 and HSP90 hasbeen studied. The fluorescence intensity of 1 was decreased when HSP70 and HSP90 were added to the host solution. This phenomenon suggested that host–guest complexation was occuring. The binding constants of 1 were obtained using a 1:1 complex formation type equation by employing the guest-induced fluorescence variations. Host 1 exhibited a higher binding ability forHSP70 than for HSP90. The effects of 1 on the chaperone activity and degradation of HSP70 and HSP90 were studied by measuring the absorption of aggregation of citrate synthase (C.S.) and sodium dodecyl sulfate (SDS)polyacrylamide gel electrophoresis of trypsin degradation, respectively. Host1 can contribute to regulate C.S. aggregation andpromote trypsin degradation of HSP70 and HSP90.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-M. Lehn: Supramolecular Chemistry, VCH, Verlagsgesellshaft (1995).

    Google Scholar 

  2. J. Szejtli: Cyclodextrin Technology, Kluwer, Dordrecht (1998).

    Google Scholar 

  3. F. Hamada, S. Minato, T. Osa, and A. Ueno: Bull. Chem. Soc. Jpn. 70, 1339 (1997).

    Google Scholar 

  4. A. Ueno, F. Moriwaki, T. Osa, F. Hamada, and K. Murai: J. Am. Chem. Soc. 110, 323 (1998).

    Google Scholar 

  5. F. Hamada, K. Ishikawa, Y. Higuchi, Y. Akagami, and A. Ueno: J. Incl. Phenom. Mol. Recognit. Chem. 25, 283 (1996).

    Google Scholar 

  6. S. Ito, M. Narita, and F. Hamada: Int. J. Soc. Mat. Eng. Resource 7, 156 (1999).

    Google Scholar 

  7. M. Narita, S. Koshizaka, and F. Hamada: J. Incl. Phenom. Macrocyclic Chem. 35, 605 (1999).

    Google Scholar 

  8. F. Hamada, Y. Kondo, K. Ishikawa, H. Ito, I. Suzuki, T. Osa, and A. Ueno: J. Incl. Phenom. Mol. Recognit. Chem. 17, 267 (1994).

    Google Scholar 

  9. F. Hamada, K. Ishikawa, R. Ito, S. Hamai, I. Suzuki, T. Osa, and A. Ueno: J. Incl. Phenom. Mol. Recognit. Chem. 20, 43 (1995).

    Google Scholar 

  10. F. Hamada, K. Ishikawa, I. Tamura, and A. Ueno: Anal. Sci. 11, 935 (1995).

    Google Scholar 

  11. F. Hamada, K. Ishikawa, I. Tamura, K. Murai, Y. Akagami, and A. Ueno: Int. J. Soc. Mat. Eng. Resource 5, 69 (1997).

    Google Scholar 

  12. M. Narita, F. Hamada, I. Suzuki, and T. Osa: J. Chem. Soc., Perkin Trans. 2, 2751 (1998).

    Google Scholar 

  13. A. Ueno, S. Minato, I. Suzuki, M. Fukushima, M. Ohkubo, T. Osa, F. Hamada, and K. Murai: Chem. Lett. 605 (1990).

  14. F. Hamada, Y. Kondo, R. Ito, I. Suzuki, T. Osa, and A. Ueno: J. Incl. Phenom. Mol. Recognit. Chem. 15, 273 (1993).

    Google Scholar 

  15. M. Narita, F. Hamada, M. Sato, I. Suzuki, and T. Osa: J. Incl. Phenom. Macrocyclic Chem. 34, 421 (1999).

    Google Scholar 

  16. M. Sato, M. Narita, N. Ogawa, and F. Hamada: Anal. Sci. 15, 1199 (1999).

    Google Scholar 

  17. T. Ikeda, K. Yoshida, and H.-J. Schneider: J. Am. Chem. Soc. 117, 1453 (1995).

    Google Scholar 

  18. H. Itoh and Y. Tashima: Int. J. Biochem. 23, 1185 (1991).

    Google Scholar 

  19. W.J. Welch: Physiol. Rev. 72, 1063 (1992).

    Google Scholar 

  20. L. Nover: The Heat Shock Response, CRC Press, Boca Raton, FL (1991).

    Google Scholar 

  21. R.I. Morimoto, A. Tissiäres, and C. Georgopoulos: The Biology of Heat Shock Proteins and Molecular Chaperones, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1994).

    Google Scholar 

  22. C.E. Stebbins, A.A. Russo, C. Scheide, N. Rosen, F.U. Hartl, and N.P. Pavlentch: Cell 89, 239 (1997).

    Google Scholar 

  23. C. Prodromou, S.M. Roe, R. O'Bien, J.E. Ladbury, P.W. Piper, and L.H. Pearl: Cell 90, 65 (1997).

    Google Scholar 

  24. T. Bhattacharyya, A.N. Karnezis, S.P. Murphy, T. Hoang, B.C. Freeman, B. Phillops, and R.I. Morimoto: J. Biol. Chem. 270, 1705 (1995).

    Google Scholar 

  25. S.K. Moore, C. Kozac, E.A. Robinson, S.J. Ullrich, and E. Appella: J. Biol. Chem. 264, 5343 (1989).

    Google Scholar 

  26. Y. Minami, Y. Kimura, H. Kawasaki, K. Suzuki, and I. Yahara: Mol. Cell. Biol. 14, 1459 (1994).

    Google Scholar 

  27. H. Itoh and Y. Tashima: Eur. J. Biochem. 193, 429 (1990).

    Google Scholar 

  28. H. Itoh, I. Toyoshima, H. Mizunuma, R. Kobayashi, and Y. Tashima: Archiv. Biochem. Biophys. 282, 290 (1990).

    Google Scholar 

  29. H. Itoh and Y. Tashima: Int. J. Biochem. 25, 69 (1993).

    Google Scholar 

  30. H. Itoh, M. Ogura, A. Komatsuda, H. Wakui, A.B. Miura, and Y. Tashima: Biochem. J. 343, 697 (1999).

    Google Scholar 

  31. U.K. Laemmli: Nature 227, 680 (1970).

    Google Scholar 

  32. U. Jacob, H. Lilie, L. Meyer, and J. Buchner: J. Biol. Chem. 270, 7288 (1995).

    Google Scholar 

  33. H. Imata, K. Kubota, K. Hattori, M. Aoyagi, and C. Jindoh: Polymer Journal 29, 563 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamada, F., Narita, M., Makabe, A. et al. The Effect of Dansyl-Modified β-Cyclodextrin on the Chaperone Activity of Heat Shock Proteins. Journal of Inclusion Phenomena 40, 83–88 (2001). https://doi.org/10.1023/A:1011179228040

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011179228040

Navigation