Skip to main content
Log in

Lacustrine basin hydrocarbon exploration – current thoughts

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Although much of the world's petroleum resource-base is associated with marine systems, regionally lacustrine petroleum systems are important. Individual accumulations may exceed several billion barrels. In each of these cases the oil is derived from a lacustrine source rock and may be produced from either nonmarine or marine reservoir rocks. The purpose of this paper is to describe the factors that control lacustrine source rock development and the nature of lacustrine reservoirs. Lacustrine oils display different physical and chemical characteristics than their marine counterparts. These differences can be related to the nature of their precursor material. Although the nature of the products are different, the geochemical threshold criteria for defining source rocks in both settings are the same because of common expulsion requirements. Commercially significant lacustrine systems require the presence of large, long-lived lakes. Such lake settings are tectonic in origin and restricted to climatic settings where precipitation exceeds evaporation. Within these large lake systems three primary factors determine source rock potential and quality. These factors are primary productivity level, organic preservation potential, and matrix sedimentation rate, which controls the dilution of preserved organic matter. Source rock potential is maximized where both productivity and preservation potential are maximized and sedimentation rate is minimized. To some degree these factors can compensate for each other. Hydrocarbon reservoir potential within lacustrine basins is partially impacted by overall tectonic setting. Within extensional settings, transport distances tend to be limited, with much of the sediment being transported away from the basin. The sediments delivered to the lake are poorly sorted and sedimentologically immature, commonly resulting in poor reservoirs due to both primary properties and their susceptibility to diagenesis. Within rifts better reservoirs tend to develop along platform or flexural margins. Stacking of reservoirs is important in lacustrine systems but baffles and barriers are often present between individual sand units. These barriers form as a result of lake level fluctuations. In compressional settings transport distances tend to be longer, resulting in more mature, better sorted sediments leading to higher quality reservoirs. These reservoirs typically develop in fluvial-deltaic and wave-dominated shoreline settings. Lacustrine carbonate reservoirs are locally important. These carbonates tend to develop during lake level lowstands and are dependent on diagenesis (dissolution and karstification) for porosity and permeability development. Lacustrine reservoirs are often stratigraphically and areally limited and display low individual well production rates. Within ‘pure’ lacustrine systems exploration opportunities appear to be often restricted by either reservoir presence or quality (i.e., production rates). The best exploration opportunities in lacustrine basins appear to be associated with hybrid systems where a lacustrine source and marine reservoir exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahão, D. & J. E. Warme, 1990. Lacustrine and associated deposits in a rifted continental margin – Lower Cretaceous Lagoa Feia Formation, Campos basin, offshore Brazil. In Katz, B. J. (ed.), Lacustrine Basin Exploration-Case Studies and Modern Analogs. Am. Assoc. Petrol. Geol. Mem. 50: 287–305.

  • Barron, E. J., 1985. Numerical climate modeling: a frontier in petroleum source rock prediction: results based on Cretaceous simulations. Am. Ass. Petrol. Geol. Bull. 69: 448–459.

    Google Scholar 

  • Barron, E. J., 1990. Climate and lacustrine petroleum source prediction. In Katz, B. J. (ed.), Lacustrine Basin Exploration-Case Studies and Modern Analogs. Am. Assoc. Petrol. Geol. Mem. 50: 1–18.

  • Baskin, D. K. & K. E. Peters, 1992. Early generation characteristics of a sulfur-rich Monterey kerogen. Am. Ass. Petrol. Geol. Bull. 76: 1–13.

    Google Scholar 

  • Beadle, L. C., 1981. The inland waters of tropical Africa, (2nd edn). Longman, NY, 475 pp.

  • Bissada, K. K., 1982. Geochemical constraints on petroleum generation and migration – a review. Proceedings ASCOPE'81, pp. 69–87.

  • Bloesch, J., P. Stadelman & H. Buhrer, 1977. Primary production, mineralization, and sedimentation in the euphotic zone of two Swiss lakes. Limnol. Oceanogr. 22: 511–526.

    Google Scholar 

  • Bracken, B. R., 1994. Syn-rift lacustrine beach and deltaic sandstone reservoirs – pre-salt (Lower Cretaceous) of Cabinda, Angola, West Africa. In Lomando, A. J., B. C. Schreiber & P. M. Harris (eds.), Lacustrine Reservoirs and Depositional Systems. Soc. Sediment. Geol. Core Workshop 19: 173–200.

  • Brassell, S. C., G. Eglinton & Fu Jia Mo, 1986. Biological marker compounds as indicators of the depositional history of the Maoming oil shale. Org. Geochem. 10: 927–941.

    Google Scholar 

  • Brown, A. C., B. A. Knights & E. Conway, 1969. Hydrocarbon content and its relationship to physiological state in the green alga Botryococcus braunii. Phytochemistry 8: 543–547.

    Google Scholar 

  • Canfield, D. E., 1992. Factors influencing organic carbon preservation in marine sediments. Chem. Geol. 114: 315–329.

    Google Scholar 

  • Carroll, A. R., 1998. Upper Permian lacustrine organic facies evolution, southern Junggar basin, NW China. Org. Geochem. 28: 649–667.

    Google Scholar 

  • Carroll, A. R. & K. M. Bohacs, 1999. Stratigraphic classification of ancient lakes: Balancing tectonic and climatic controls. Geology 27: 99–102.

    Google Scholar 

  • Castle, J. W., 1990. Sedimentation in Eocene Lake Uinta (lower Green River Formation), northeastern Uinta basin, Utah. In Katz, B. J. (ed.), Lacustrine Basin Exploration-Case Studies and Modern Analogs. Am. Assoc. Petrol. Geol. Mem. 50: 243–263.

  • Cecil, C. B., 1990. Paleoclimate controls on stratigraphic repetition of chemical and siliciclastic rocks. Geology 18: 533–536.

    Google Scholar 

  • Cohen, A. S., 1990. Tectono-stratigraphic model for sedimentation in Lake Tanganyika, Africa. In Katz, B. J. (ed.), Lacustrine Basin Exploration-Case Studies and Modern Analogs. Am. Assoc. Petrol. Geol. Mem. 50: 137–150.

  • Coleman, M. L., C. D. Curtis & H. Irwin, 1979. Burial rate a key to source and reservoir potential. World Oil 1979 (March): 83–92.

  • Curiale, J. A. & M. R. Gibling, 1994. Productivity control on oil shale formation-Mae Sot basin, Thailand. Org. Geochem. 21: 67–89.

    Google Scholar 

  • Dean, W. E., 1981. Carbonate minerals and organic matter in sediments of modern north temperate hard-water lakes. In Ethridge, F. G. & R. M. Flores (eds), Recent and Ancient Nonmarine Depositional Environments – Models for Exploration. Soc. Econ. Paleontol. Mineral. Special Publication 31: 213–231.

  • Demaison, G., A. J. J. Holck, R. W. Jones & G. T. Moore, 1984. Predictive source bed stratigraphy: A guide to regional petroleum occurrence. Proceedings of the 11th World Petroleum Congress 2: 17–20.

    Google Scholar 

  • Demaison, G. J. & G. T. Moore, 1980. Anoxic environments and source bed genesis. Am. Assoc. Petrol. Geol. Bull. 64: 1179–1209.

    Google Scholar 

  • Guardado, L. R., L. A. P. Gamboa & C. F. Lucchesi, 1989. Petroleum geology of the Campos basin, Brazil, a model for a producing Atlantic type basin. In Edwards, J. D. & P. A. Santogrossi (eds), Divergent/Passive Margin Basins. Am. Assoc. Petrol. Geol. Mem. 48: 3–79.

  • Hammer, U. T., 1981. Primary production in saline lakes – a review. Hydrobiologia 81: 49–57.

    Google Scholar 

  • Harris, N. B., in press. The Toca Carbonate, Congo basin: Response to an evolving rift lake. In Mello, M. R. & B. Katz. (eds), Petroleum Systems of the South Atlantic Margins. Am. Assoc. Petrol. Geol. Mem.

  • Harris, N. B., P. Sorriaux & D. F. Toomey, 1994. Geology of the Lower Cretaceous Viodo carbonate, Congo basin: A lacustrine carbonate in the South Atlantic rift. In Lomando A. J., B. C. Schreiber & P. M. Harris (eds), Lacustrine Reservoirs and Depositional Systems. Soc. Sediment. Geol. Core Workshop 19: 143–172.

  • Hay, W. W., E. J. Barron & S. L. Thompson, 1990. Results of global atmospheric experiments on an earth with a meridional poleto-pole continent. J. Geol. Soc. (London) 147: 385–392.

    Google Scholar 

  • Hecky, R., F. Bugenyi, P. Ochumbo, M. Gophen & L. Kaufman, 1994. Recent evolution of permanent anoxia in the hypolimnion of Lake Victoria. Limnol. Oceanogr. 39: 1476–1481.

    Google Scholar 

  • Herdendorf, C. E., 1980. Distribution of the world's large lakes. In Tilzer, M. M. & C. Serruya (eds), Large Lakes, Ecological Structure and Function. Springer-Verlag, Berlin, pp. 3–38.

    Google Scholar 

  • Horschutz, P. M. C., L. C. S. de Freitas, C. V. Stank, A. da S. Barroso & W. M. Cruz, 1992. The Linguado, Carapeba, Vermelho, and Marimbá giant oil fields, Campos basin, offshore Brazil. In Halbouty, M. T. (ed.), Giant Oil and Gas Fields of the Decade 1978–1988. Am. Assoc. Petrol. Geol. Mem. 54: 137–153.

  • Huang Difan, 1997. Advances in hydrocarbon generation theory (I) – Immature oils and generating hydrocarbon and evolutionary model. Proceedings 30th International Geological Congress 18: 3–15.

    Google Scholar 

  • Huc, A. Y., 1990. Understanding organic facies: A key to improved quantitative petroleum evaluation of sedimentary basins. In Huc, A. Y. (ed.), Deposition of Organic Facies. Am. Assoc. Petrol. Geol. Studies in Geology 30: 1–11.

  • Huc, A. Y., J. LeFournier, M. Vandenbroucke & G. Bessereau, 1990. Northern Lake Tanganyika – An example of organic sedimentation in an anoxic rift lake. In Katz, B. J. (ed.), Lacustrine Basin Exploration-Case Studies and Modern Analogs. Am. Assoc. Petrol. Geol. Mem. 50: 169–185.

  • Hutchinson, G. E., 1957. A Treatise on Limnology – Geography, Physics and Chemistry. John Wiley & Sons, NY, 1015 pp.

    Google Scholar 

  • Ibach, L. E. J., 1982. Relationship between sedimentation rate and total organic carbon content in ancient marine sediments. Am. Assoc. Petrol. Geol. Bull. 66: 170–188.

    Google Scholar 

  • Johnson, T. C. & P. Ng'ang'a, 1990. Reflections on a rift lake. In Katz, B. J. (ed.), Lacustrine Basin Exploration-Case Studies and Modern Analogs. Am. Assoc. Petrol. Geol. Mem. 50: 113–135.

  • Jørgensen, B. B. & Y. Cohen, 1977. Solar Lake (Sinai). 5. The sulfur cycle of the benthic cyanobacterial mats. Limnol. Oceanogr. 22: 657–666.

    Google Scholar 

  • Kaliff, J., 1983. Phosphorous limitation in some tropical lakes. Hydrobiologica 100: 101–112.

    Google Scholar 

  • Katz, B. J., 1990. Controls on distribution of lacustrine source rocks through time and space. In Katz, B. J. (ed.), Lacustrine Basin Exploration-Case Studies and Modern Analogs. Am. Assoc. Petrol. Geol. Mem. 50: 61–76.

  • Katz, B. J., 1995, Factors controlling the development of lacustrine petroleum source rocks-An update. In Huc, A. Y. (ed.), Paleogeography, Paleoclimate, and Source Rocks. Am. Assoc. Petrol. Geol. Studies in Geology 40: 61–79.

  • Katz, B. J., K. K. Bissada & J. W. Wood, 1987. Factors limiting the potential of evaporites as hydrocarbon source rocks. Society of Exploration Geophysicists Fifty-Seventh Annual International Meeting and Exposition – Expanded Abstracts of the Technical Program with Authors’ Biographies, pp. 281–283.

  • Katz, B. J. & W. C. Dawson, 1997. Pematang-Sihapas petroleum system of Central Sumatra. Proceedings of the Petroleum Systems of SE Asia and Australasia Conference. Indonesian Petroleum Association (Jakarta), pp. 685–698.

  • Katz, B. J., W. C. Dawson, C. Atallah, G. B. Sulistyo, L. M. Darnell, E. Szymczyk & L. Elrod, 1998. Anatomy of a lacustrine source – The Brown Shale of Central Sumatra, Indonesia. 1998 AAPG Annual Convention – Extended Abstracts 2: A352.

    Google Scholar 

  • Katz, B. J. & L. M. Liro, 1993. The Waltman Shale Member, Fort Union Formation, Wind River basin: A Paleocene Clastics Lacustrine Source Rock System. In Keefer, W. R., W. J. Metzger & L. H. Godwin (eds), Oil and Gas and Other Resources of the Wind River Basin, Wyoming. Wyoming Geological Association, Casper, pp. 163–174.

  • Katz, B. J. & Liu Xingcai, 1998. Summary of the AAPG Research Symposium on lacustrine basin exploration in China and Southeast Asia. Am. Assoc. Petrol. Geol. Bull. 82: 1300–1307.

    Google Scholar 

  • Katz, B. J. & B. Mertani, 1989. Central Sumatra – A geochemical paradox. Indonesian Petroleum Association 18th Annual Convention Proceedings 1: 403–425.

    Google Scholar 

  • Kelts, K., 1988. Environments of deposition of lacustrine petroleum source rocks – an introduction. In Fleet, A. J., K. Kelts & M. R. Talbot (eds), Lacustrine Petroleum Source Rocks. Geol. Soc. Special Publication 40: 3–26.

  • Kinsman, D. J. J., M. Boardman & M. Borcsik, 1974. An experimental determination of the solubiility of oxygen in marine brines. Proceedings Fourth Symposium on Salt 1: 325–327.

    Google Scholar 

  • Kirk, R. B., 1994. Some ideas on the sequence setting of source rocks. PESA J. 22: 113–122.

    Google Scholar 

  • Koyama, T., M. Nikaiso, T. Tomino & H. Hayakawa, 1973. Decomposition of organic matter in lake sediments. Hydrogeochem. Biogeochem. Symp. Proc. 2: 512–535.

    Google Scholar 

  • Kruge, M. A., J. F. Hubert, R. J. Akes & P. A. Meriney, 1990. Biological markers in Lower Jurassic synrift lacustrine black shales, Hartford basin, Connecticut, U.S.A., Org. Geochem. 15: 281–289.

    Google Scholar 

  • Lambiase, J. J., 1990. A model for tectonic control of lacustrine stratigraphic sequences in continental rift basins. In Katz, B. J. (ed.), Lacustrine Basin Exploration-Case Studies and Modern Analogs. Am. Assoc. Petrol. Geol. Mem. 50: 265–286.

  • Laplante, R. E., 1974. Hydrocarbon generation in Gulf Coast Tertiary sediments. Am. Assoc. Petrol. Geol. Bull. 58: 1281–1304.

    Google Scholar 

  • Lewan, M. D., 1984. Factors controlling the proportionality of vanadium to nickel in crude oils. Geochem. Cosmochim. Acta 48: 2231–2238.

    Google Scholar 

  • Li Desheng, 1995. Hydrocarbon habitat in the Songliao rift basin, China. In Lambiase, J. J. (ed.), Hydrocarbon Habitat in Rift Basins. Geol. Soc. Special Publication 80: 317–329.

  • Li Desheng, Jiang Renqi & B. J. Katz, 1995. Petroleum generation in the nonmarine Qingshankou Formation (Lower Cretaceous), Songliao basin, China. In Katz, B. J. (ed.), Petroleum Source Rocks. Springer-Verlag, Heidelberg, pp. 131–148.

    Google Scholar 

  • Likens, G. E., 1975. Primary production of inland aquatic ecosystems. In Lieth, H. & R. H. Whittaker (eds), Primary Productivity of the Biosphere. Springer-Verlag, NY, pp. 186–215.

    Google Scholar 

  • Magnavita, L. P. & H. T. F. da Silva, 1995. Rift border system: The interplay between tectonics and sedimentation in the Recôncavo basin, northeast Brazil. Am. Assoc. Petrol. Geol. Bull. 79: 1590–1607.

    Google Scholar 

  • McHague, T. R., 1990. Stratigraphic development of Proto-South Atlantic rifting in Cabinda, Angola – A petrolifeous lake basin. In Katz, B. J. (ed.), Lacustrine Basin Exploration-Case Studies and Modern Analogs. Am. Assoc. Petrol. Geol. Mem. 50: 307–326.

  • Mello, M. R., P. C. Gaglianone, S. C. Brassell & J. R. Maxwell, 1988. Geochemical and biological marker assessment of depositional environments using Brazilian offshore oils. Mar. Pet. Geol. 5: 205–223.

    Google Scholar 

  • Metzger, P., C. Berkaloff, E. Casadevall & A. Coute, 1985. Alkadiene-and botyrococcene-producing races of wild strains of Botryococcus braunii. Phytochemistry 24: 2305–2312.

    Google Scholar 

  • Meybeck, M., 1995. Global distribution of lakes. In Lerman, A., D. M. Imboden & J. R. Gat (eds), Physics and Chemistry of Lakes (2nd edn). Springer-Verlag, Berlin, pp. 1–35.

    Google Scholar 

  • Meyerhoff, A. A. & J.-O. Willums, 1981. Petroleum in the People's Republic of China, 1949–1979. In Halbouty, M.T. (ed.), Energy Resources of the Pacific Region. AAPG, Tulsa, pp. 195–214.

  • Meyers, P. A. & R. Ishiwatari, 1995. Organic matter accumulation records in lake sediments. In Lerman, A., D. M. Imboden & J. R. Gat (eds), Physics and Chemistry of Lakes (2nd edn). Springer-Verlag, Berlin, pp. 279–328.

    Google Scholar 

  • Moore, G. T., E. J. Barron, K. L. Bice & D. N. Hayashida, 1995. Paleoclimatic controls on Neocomian-Barremian (Early Cretaceous) lithostratigraphy in northern Gondwana's rift lakes interpreted from a general circulation model simulation. In Huc, A. Y. (ed.), Paleogeography, Paleoclimate, and Source Rocks. Am. Assoc. Petrol. Geol. Studies in Geology 40: 173–189.

  • Mortimer, C. H., 1956. The oxygen content of air-saturated freshwaters, and aids in calculating percentage saturation. Verh. Int. Ver. Theor. Angew. Limnol. 6: 20 pp.

    Google Scholar 

  • Olsen, P. E., 1990. Tectonic, climatic, and biotic modulation of lacustrine ecosystems-examples from Newark Supergroup of eastern North America. In Katz, B. J. (ed.), Lacustrine Basin Exploration-Case Studies and Modern Analogs. Am. Assoc. Petrol. Geol. Mem. 50: 209–224.

  • Porter, K. G. & E. I. Robbins, 1981. Zooplankton fecal pellets link fossil fuel and phosphate deposits. Science 212: 931–933.

    Google Scholar 

  • Post, F. J., 1977. The microbial ecology of the Great Salt Lake. Microb. Ecol. 3: 143–165.

    Google Scholar 

  • Scholz, C. A., 1995. Deltas of the Lake Malawi rift, East Africa: Seismic expression and exploration implications. Am. Assoc. Petrol. Geol. Bull. 79: 1679–1697.

    Google Scholar 

  • Scholz, C. A. & B. R. Rosendahl, 1988. Low lake stands in Lakes Malawi and Tanganyika, east Africa, delineated with multifold seismic data. Science 240: 1645–1648.

    Google Scholar 

  • Serruya, C. & U. Pollingher, 1983. Lakes of the Warm Belt. Cambridge University Press, Cambridge, 569 pp.

    Google Scholar 

  • Smith, M. A., 1990. Lacustrine oil shale in the geologic record. In Katz, B. J. (ed.), Lacustrine Basin Exploration-Case Studies and Modern Analogs. Am. Assoc. Petrol. Geol. Mem. 50: 43–60.

  • Smith, R. D. A., 1995. Reservoir architecture of syn-rift lacustrine turbidite systems, Early Cretaceous, offshore south Gabon. In Lambiase, J. J. (ed.), Hydrocarbon Habitat in Rift Basins. Geol. Soc. Special Publication 80: 197–210.

  • Street, F. A. & A. T. Grove, 1979. Global maps of lake-level fluctuations since 30,000 yrs B.P. Quat. Res. 12: 83–118.

    Google Scholar 

  • Stumm, W. & P. Baccini, 1978. Man-made chemical perturbation of lakes. In Lerman, A. (ed.), Lakes – Chemistry, Geology, Physics. Springer-Verlag, NY, pp. 91–126.

    Google Scholar 

  • Sundararaman, P., S. C. Teerman, R. G. Mann & B. Mertani, 1988. Activation energy distribution: A key parameter in basin modeling and a geochemical technique for studying maturation and organic facies. Proceedings Seventeenth Indonesian Petroleum Association Convention 1: 169–185.

    Google Scholar 

  • Takahashi, T., W. Broecker, Y. H. Li & D. Thurber, 1968. Chemical and isotopic balances for a meromictic lake. Limnol. Oceanogr. 13: 272–292.

    Google Scholar 

  • Talbot, M. R., 1988. The origins of lacustrine source rocks: evidence from the lakes of tropical Africa. In Fleet, A. J., K. Kelts & M. R. Talbot (eds), Lacustrine Petroleum Source Rocks. Geol. Soc. Special Publication 40: 29–43.

  • Talling, J. F. & I. B. Talling, 1965. The chemical composition of African lake waters. Int. Revue ges Hydrobiol. 50: 421–463.

    Google Scholar 

  • Tissot, B. P. & D. H. Welte, 1984. Petroleum formation and occurrence (2nd edn). Springer-Verlag, Berlin, 699 pp.

    Google Scholar 

  • Waples, D. W., 1983. Reappraisal of anoxia and organic richness with emphasis on Cretaceous of North Atlantic. Am. Assoc. Petrol. Geol. Bull. 67: 963–978.

    Google Scholar 

  • Warren, J. K., 1986. Shallow-water evaporite environments and their source rock potential. J. Sediment. Petrol. 56: 442–454.

    Google Scholar 

  • Watson, M. P., A. B. Hayward, D. N. Parkinson & Z. Zhang, 1987. Plate tectonic history, basin development and petroleum source rock deposition onshore China. Mar. Pet. Geol. 4: 205–225.

    Google Scholar 

  • Wells, J. T., C. A. Scholz & T. C. Johnson, 1994. Highstand deltas in Lake Malawi, East Africa: Environments of deposition and processes of sedimentation. In Lomando, A. J., B.C. Schreiber & P. M. Harris (eds), Lacustrine Reservoirs and Depositional Systems. Soc. Sediment. Geol. Core Workshop 19: 1–35.

  • Williams, H. H. & R. T. Eubank, 1995. Hydrocarbon habitat in the rift graben of the Central Sumatra basin, Indonesia. In Lambiase, J. J. (ed.), Hydrocarbon Habitat in Rift Basins. Geol. Soc. Special Publication 80: 331–371.

  • Williams, H. H., P. A. Kelley, J. S. Janks & R. M. Christensen, 1985. The Paleogene rift basin source rocks of Central Sumatra. Proceedings of the 14th Annual Convention Indonesian Petroleum Association 2: 57–90.

    Google Scholar 

  • Yang Jiaming, Lai Wanzhong & Wu Peikang, 1995. Main paleolake infill patterns in Cenozoic rift basins in China offshore. Presented at the AAPG-Shengli Petroleum Administration Research Symposium on Lacustrine Basin Exploration in China and Southeast Asia, Dongying, People's Republic of China, October 16–20, 1995 (abstract).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katz, B.J. Lacustrine basin hydrocarbon exploration – current thoughts. Journal of Paleolimnology 26, 161–179 (2001). https://doi.org/10.1023/A:1011173805661

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011173805661

Navigation