Skip to main content
Log in

The Effects of Streptokinase and Hydroxyethyl Starch on in vitro Clot Disruption by Ultrasound

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Background: In vitro studies showed that low-frequency ultrasound (US) causes blood clot dissolution. This effect is augmented with thrombolytics, microbubbles and microparticles. However, in animal models of transcutaneous delivery, US alone is not effective, probably due to attenuation of US energy by overlying skin. When combined with thrombolytics or microbubbles, transcutaneous US is highly effective. Purpose: To assess the synergistic effect of low-intensity low-frequency US and saline, hydroxyethyl starch (HAES) (a non-gas filled microparticle containing solution), streptokinase (STK), and their combination on blood clot disruption. Methods: Human blood clots from 4 healthy donors, 2–4 hours old, were immersed for 0, 15, or 30 min in 37°C in 10 ml of the above-mentioned solutions, and then were randomized to 10 sec of 20 kHz US or no US. The % difference in weight was calculated. Results: Immersion for 30 min without US resulted in 13.8 ± 1.2% clot lysis in saline, and 22.0 ± 1.3%, 21.7 ± 2.1%, and 23.2 ± 1.9% in STK, HAES, and STK + HAES, respectively (p = 0.002). US augmented clot lysis in all groups and at all time points. With low-intensity US, HAES was not better than saline. However, the combination of HAES + STK with US resulted in larger clot disruption at 15 sec incubation time (46.7 ± 3.2%) than with saline (29.6 ± 2.1%), HAES (29.6 ± 2.5%), and STK (32.8 ± 3.6%) (p < 0.001). Conclusion: low-frequency, low-intensity US combined with HAES and STK resulted in greater clot disruption at short incubation times. This combination may assist in achieving faster reperfusion in in vivo models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosenschein U, Bernstein JJ, DiSegni E, Kaplinsky E, Bernheim J, Rozenzsajn LA. Experimental ultrasonic angioplasty: Disruption of atherosclerotic plaques and thrombi in vitroand arterial recanalization in vivo.J Am Coll Cardiol 1990; 15: 711-17.

    PubMed  Google Scholar 

  2. Hong AS, Chae JS, Dubin SB, Lee S, Fishbein MC, Siegel RJ. Ultrasonic clot disruption: An in vitrostudy. Am Heart J 1990; 120:4 18-22.

    Google Scholar 

  3. Ariani M, Fishbein MC, Chae JS, et al. Dissolution of peripheral arterial thrombi by ultrasound. Circulation 1991; 84: 1680-88.

    PubMed  Google Scholar 

  4. Sehgal CM, Leveen RF, Shlansky-Goldberg RD. Ultrasound-assisted thrombolysis. Invest Radiol 1993; 28:9 39-43.

    PubMed  Google Scholar 

  5. Porter TR, Le Veen RF, Fox R, Kricsfeld A, Xie F. Thrombolytic enhancement with perfluorocarbon-exposed sonicated dextrose albumin microbubbles. Am Heart J 1996; 132: 964-68.

    PubMed  Google Scholar 

  6. Kondo I, Mizushige K, Ueda T, Masugata H, Ohmori K, Matsuo H. Histological observations and the process of ultrasound contrast agent enhancement of tissue plasminogen activator thrombolysis with ultrasound exposure. Jpn Circ J 1999; 63: 478-84.

    PubMed  Google Scholar 

  7. Birnbaum Y, Atar S, Luo H, Nagai T, Siegel RJ. Ultrasound has synergistic effects in vitrowith tirofiban and heparin for thrombus dissolution. Thromb Res 1999; 96:4 51-58.

    PubMed  Google Scholar 

  8. Birnbaum Y, lakobishvili Z, Porter A, et al. Microparticlecontaining oncotic solutions augment in vitroclot disruption by ultrasound. Thromb Research 2000; 98:5 49-57.

    Google Scholar 

  9. Luo H, Steffen W, Cercek B, Arunasalam S, Maurer G, Siegel RJ. Enhancement of thrombolysis by external ultrasound. Am Heart J 1993; 125:15 64-69.

    Google Scholar 

  10. Kimura M, Iijima S, Kobayashi K, Furuhata H. Evaluation of the thrombolytic effect of tissue-type plasminogen activator with ultrasonic irradiation: In vitroexperiment involving assay of the fibrin degradation products from the clot. Biol Pharm Bull 1994; 17:1 26-30.

    Google Scholar 

  11. Harpaz D, Chen X, Francis CW, Meltzer RS. Ultrasound accelerates urokinase-induced thrombolysis and reperfusion. Am Heart J 1994; 127:12 11-19.

    Google Scholar 

  12. Kornowski R, Meltzer RS, Chernine A, Vered Z, Battler A. Does external ultrasound accelerate thrombolysis? Results from a rabbit model. Circulation 1994; 89:3 39-44.

    Google Scholar 

  13. Olsson SB, Johansson B, Nilsson AM, Olsson C, Roijer A. Enhancement of thrombolysis by ultrasound. Ultrasound Med Biol 1994; 20:3 75-82.

    Google Scholar 

  14. Luo H, Birnbaum Y, Fishbein MC, et al. Enhancement of thrombolysis in vivowithout skin and soft tissue damage by transcutaneous ultrasound. Thromb Res 1998; 89:1 71-77.

    Google Scholar 

  15. Luo H, Nishioka T, Fishbein MC, et al. Transcutaneous ultrasound augments lysis of arterial thrombi in vivo.Circulation 1996; 94:7 75-78.

    Google Scholar 

  16. Riggs PN, Francis CW, Bartos SR, Penney DP. Ultrasound enhancement of rabbit femoral artery thrombolysis. Cardiovasc Surg 1997; 5:2 01-07.

    Google Scholar 

  17. Francis CW, Blinc A, Lee S, Cox C. Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots. Ultrasound Med Biol 1995; 21:4 19-24.

    Google Scholar 

  18. Akiyama M, Ishibashi T, Yamada T, Furuhata H. Lowfrequency ultrasound penetrates the cranium and enhances thrombolysis in vitro.Neurosurgery 1998; 43: 828-832; discussion 832-33.

    PubMed  Google Scholar 

  19. Larsson J, Carlson J, Olsson SB. Ultrasound enhanced thrombolysis in experimental retinal vein occlusion in the rabbit. Br J Ophthalmol 1998; 82:14 38-40.

    Google Scholar 

  20. Tachibana K, Tachibana S. Albumin microbubble echocontrast material as an enhancer for ultrasound accelerated thrombolysis. Circulation 1995; 92:11 48-50.

    Google Scholar 

  21. Nishioka T, Luo H, Fishbein MC, et al. Dissolution of thrombotic arterial occlution by high intensity low frequency ultrasound and dodecafluoropentane emulsion: In vitroand in vivostudy. Am Coll Cardiol 1997; 30: 561-68.

    Google Scholar 

  22. Birnbaum Y, Luo H, Nagai T, et al. Noninvasive in vivoclot dissolution without a thrombolytic drug: Recanalization of thrombosed iliofemoral arteries by transcutaneous ultrasound combined with intravenous infusion of microbubbles. Circulation 1998; 97:1 30-34.

    Google Scholar 

  23. Rosenschein U, Roth A, Rassin T, Basan S, Laniado S, Miller HI. Analysis of coronary ultrasound thrombolysis endpoints in acute myocardial infarction (ACUTE trial). Results of the feasibility phase. Circulation 1997; 95: 1411-16.

    PubMed  Google Scholar 

  24. Hamm CW, Steffen W, Terres W, et al. Intravascular therapeutic ultrasound thrombolysis in acute myocardial infarctions. Am J Cardiol 1997; 80: 200-04.

    Google Scholar 

  25. Rosenschein U, Gaul G, Erbel R, et al. Percutaneous transluminal therapy of occluded saphenous vein grafts: Can the challenge be met with ultrasound thrombolysis? Circulation 1999; 99: 26-29.

    PubMed  Google Scholar 

  26. Siegel RJ, Cumberland DC, Myler RK, Belli A, DonMichael TA. Percutaneous peripheral ultrasonic angioplasty. Herz 1990; 15: 329-34.

    PubMed  Google Scholar 

  27. Rosenschein U, Rozenszajn LA, Kraus L, et al. Ultrasonic angioplasty in totally occluded peripheral arteries. Initial clinical, histological, and angiographic results. Circulation 1991; 83:19 76-86.

    Google Scholar 

  28. Lauer CG, Burge R, Tang DB, Bass BG, Gomez ER, Alving BM. Effect of ultrasound on tissue-type plasminogen activator-induced thrombolysis. Circulation 1992; 86:12 57-64.

    Google Scholar 

  29. Siegel R, Atar S, Fishbein MC, et al. Noninvasive transthoracic low frequency ultrasound augments thrombolysis in a canine model of acute myocardial infarction. Circulation 2000; 101:20 26-29.

    Google Scholar 

  30. Lincoff AM, Topol EJ. Illusion of reperfusion: Does anyone achieve optimal reperfusion during acute myocardial infarction? Circulation 1993; 88:13 61-74.

    Google Scholar 

  31. Hensel M, Wrobel R, Volk T, Pahlig H, Kox WJ. Changes in coagulation physiology and rheology after preoperative normovolemic hemodilution. Anasthesiol Intensivmed Notfallmed Schmerzther 1996; 31: 481-87.

    PubMed  Google Scholar 

  32. Munsch CM, MacIntyre E, Machin SJ, Mackie IJ, Treasure T. Hydroxyethyl starch: An alternative to plasma for postoperative volume expansion after cardiac surgery. Br J Surg 1988; 75:6 75-78.

    Google Scholar 

  33. Claes Y, Van Hemelrijck J, Van Gerven M, et al. Influence of hydroxyethyl starch on coagulation in patients during the perioperative period. Anesth Analg 1992; 75: 24-30.

    PubMed  Google Scholar 

  34. Boldt J, Muller M, Heesen M, Heyn O, Hempelmann G. Influence of different volume therapies on platelet function in the critically ill. Intensive Care Med 1996; 22:10 75-81.

    Google Scholar 

  35. Blaicher AM, Reiter WJ, Blaicher W, et al. The effect of hydroxyethyl starch on platelet aggregation in vitro.Anesth Analg 1998; 86:13 18-21.

    Google Scholar 

  36. Kapiotis S, Quehenberger P, Eichler HG, et al. Effect of hydroxyethyl starch on the activity of blood coagulation and fibrinolysis in healthy volunteers: Comparison with albumin. Crit Care Med 1994; 22:6 06-12.

    Google Scholar 

  37. Strauss Rg. Review of the effects of hydroxyethyl starch on the blood coagulation system. Transfusion 1981; 21:2 99-02.

    Google Scholar 

  38. Treib J, Haass A, Pindur G, Treib W, Wenzel E, Schimrigk K. Influence of intravascular molecular weight of hydroxyethyl starch on platelets. Eur J Haematol 1996; 56:1 68-72.

    PubMed  Google Scholar 

  39. Vogt NH, Bothner U, Lerch G, Lindner KH, Georgieff M. Large-dose administration of 6% hydroxyethyl starch 200/0.5 total hip arthroplasty: Plasma homeostasis, hemostasis, and renal function compared to use of5%human albumin. Anesth Analg 1996; 83:2 62-68.

    PubMed  Google Scholar 

  40. Ota T, Hillman ND, Craig D, Kisslo J, Smith PK. Contrast echocardiography: Influence of ultrasonic machine settings, mixing conditions, and pressurization on pixel intensity and microsphere size of Albunex solution in vitro.J Am Soc Echocardiogr 1997; 10: 31-40.

    PubMed  Google Scholar 

  41. Vandenberg BF, Melton HE. Acoustic lability of albumin microspheres. J Am Soc Echocardiogr 1994; 7:5 82-89.

    PubMed  Google Scholar 

  42. Wu J, Tong J. Experimental study of stability of a contrast agent in an ultrasound field. Ultrasound Med Biol 1998; 24:2 57-65.

    Google Scholar 

  43. Jamnicki M, Zollinger A, Seifert B, Popovic D, Pasch T, Spahn DR. Compromised blood coagulation: An in vitrocomparison of hydroxyethyl starch 130/0.4 and hydroxyethyl starch 200/0.5 using thrombelastography. Anesth Analg 1998; 87:9 89-93.

    Google Scholar 

  44. Langer R, Jordan U, Wolfle A, Henrich HA. Action of hydroxyethyl starch (HES) on the activity of plasmatic clotting factors. Clin Hemorheol Microcirc 1998; 18:1 03-16.

    Google Scholar 

  45. Tobias MD, Wambold D, Pilla MA, Greer F. Differential effects of serial hemodilution with hydroxyethyl starch, albumin, and 0.9% saline on whole blood coagulation. J Clin Anesth 1998; 10:3 66-71.

    PubMed  Google Scholar 

  46. Conroy JM, Fishman RL, Reeves ST, Pinosky ML, Lazarchick J. The effects of desmopressin and 6% hydroxyethyl starch on factor VIII:C. Anesth Analg 1996; 83: 804-07.

    PubMed  Google Scholar 

  47. Farrugia A, Griffin B, Pepper D, Prowse C. Studies on the procurement of coagulation factor VIII: Selective precipitation of factor VIII with hydrophilic polymers. Thromb Haemost 1984; 51:3 38-42.

    Google Scholar 

  48. Sanfelippo MJ, Suberviola PD, Geimer NF. Development of a von Willebrand-like syndrome after prolonged use of hydroxyethyl starch. Am J Clin Pathol 1987; 88: 653-55.

    PubMed  Google Scholar 

  49. Stump DC, Strauss RG, Henriksen RA, Petersen RE, Saunders R. Effects of hydroxyethyl starch on blood coagulation, particularly factor VIII. Transfusion 1985; 25: 349-54.

    PubMed  Google Scholar 

  50. Lazarchick J, Conroy JM. The effect of 6% hydroxyethyl starch and desmopressin infusion on von Willebrand factor: Ristocetin cofactor activity. Ann Clin Lab Sci 1995; 25:3 06-09.

    Google Scholar 

  51. Dalrymple-Hay M, Aitchison R, Collins P, Sekhar M, Colvin B. Hydroxyethyl starch induced acquired von Willebrand's disease. Clin Lab Haematol 1992; 14: 209-11.

    PubMed  Google Scholar 

  52. Egli GA, Zollinger A, Seifert B, Popovic D, Pasch T, Spahn DR. Effect of progressive haemodilution with hydroxyethyl starch, gelatin and albumin on blood coagulation. Br J Anaesth 1997; 78: 684-89.

    PubMed  Google Scholar 

  53. Treib J, Haass A, Pindur G. Coagulation disorders caused by hydroxyethyl starch. Thromb Haemost 1997; 78: 974-83.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adler, Y., Attar, D., Vaturi, M. et al. The Effects of Streptokinase and Hydroxyethyl Starch on in vitro Clot Disruption by Ultrasound. Cardiovasc Drugs Ther 15, 119–123 (2001). https://doi.org/10.1023/A:1011166711358

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011166711358

Navigation