Advertisement

Journal of Paleolimnology

, Volume 25, Issue 3, pp 279–295 | Cite as

Diatom-based ionic concentration and salinity models from the south Bolivian Altiplano (15–23 ° S

  • F. Sylvestre
  • S. Servant-Vildary
  • M. Roux
Article

Abstract

The relationship between surface sediment diatom assemblages and measured limnological variables in fifty eight lake samples from the south Bolivian Altiplano was examined by constructing a diatom-water chemistry dataset. Analysis of this dataset by canonical correspondence analysis revealed that salinity and ionic concentration accounted for a significant amount of the variation in the distribution of the diatom assemblages. Two methods ‘weighted-averaging regression and calibration’, and ‘by-class mean percentage table’ were used to established a transfer function for future reconstruction of past lake water salinity and ionic concentration in the southern Bolivian Altiplano. Weighted-averaging regression and calibration with inverse deshrinking provided a better model for the water chemistry reconstructions in this region.

Bolivia modern diatom flora salinity ionic composition transfer function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badaut, D. & F. Risacher, 1982. Authigenic smectite on diatom frustules in Bolivian saline lakes. Geochim. Cosmochim. Acta 47: 363–375.Google Scholar
  2. Birks, H. J. B., J. M. Line, S. Juggins, A. C. Stevenson & C. J. F. ter Braak, 1990. Diatoms and pH reconstruction. Phil. Trans. R. Soc. Lond. B 327: 263–278.Google Scholar
  3. Boulangé, B., L. A. Rodrigo & C. Vargas, 1978. Morphologie, formation et aspects sédimentologiques du lac Poopò (Bolivie). Cah. O.R.S.T.O.M Sér. Géol. 10: 69–78.Google Scholar
  4. Carmouze, J. P., C. Arze & J. Quintanilla, 1978. Circulación de materia (agua-sales disueltas) a través del sistema fluviolacustre del Altiplano: la regulación hídrica e hydroquímica de los lagos Titicaca y Poopò. Cah. O.R.S.T.O.M, Sér. Géol. 10: 49–68.Google Scholar
  5. Cumming, B. F. & J. P. Smol, 1993. Development of diatom-based salinity models for paleoclimatic research from lakes in British Colombia (Canada). Hydrobiologia 269/270: 179–196.Google Scholar
  6. Frenguelli, J., 1929. Diatomee fossili delle conche saline del deserto cileno-boliviano. Boll. Soc. Geol. Ital. 47: 185–236.Google Scholar
  7. Frenguelli, J., 1936. Diatomeas de la caliza de la Cuenca de Calama. Rev. Mus. La Plata, Secc. Paleontol. 1: 3–120.Google Scholar
  8. Fritz, S. C., S. Juggins, R. W. Battarbee & D. R. Engstrom, 1991. Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature 352: 706–708.Google Scholar
  9. Fritz, S. C., S. Juggins & R. W. Battarbee, 1993. Diatom assemblages and ionic characterization of lakes of the northern Great Plains, North America: a tool of reconstructing past salinity and climates fluctuations. Can. J. Fish. Aquat. Sci. 50: 1844–1856.Google Scholar
  10. Gasse, F., S. Juggins & L. Ben Khelifa, 1995. Diatom-based transfer function for inferring hydrochemical characteristics of African paleolakes. Palaeogeogr. Palaeoclim. Palaeoecol. 117: 31–54.Google Scholar
  11. Germain, H., 1981. Flore des diatomées. Soc. Nouv. Ed Boubée, Coll. 'Faunes et Flores actuelles', Paris, 444 pp.Google Scholar
  12. Hendey, N. I., 1964. Bacillariophyceae (Diatoms). In: An introductory account of the smaller algae of British coastal waters, Fishery Investigations. HMSO, London, 4, 317 pp.Google Scholar
  13. Iltis, A., F. Risacher & S. Servant-Vildary, 1984. Contribution à l'étude hydrobiologique des lacs salés du sud de l'Altiplano bolivien. Rev. Hydrobiol. Trop. 17: 277–362.Google Scholar
  14. Imbrie, J. J. & N. G. Kipp, 1971. A new micropaleontological method for quantitative paleoclimatology: application to a late Pleistocene Carribean core. In Turekian, K. K. (ed.), The Late Cenozoic Glacial Ages. Yale University Press, 71–181.Google Scholar
  15. Krammer, K. & H. Lange-Bertalot, 1986. Süsswasserflora von Mitteleuropa. Bacillariophyceae. Teil 1: Naviculaceae. VEB Gustav Fischer Verlag, Jena, 876 pp.Google Scholar
  16. Krammer, K. & H. Lange-Bertalot, 1988. Süsswasserflora von Mitteleuropa. Bacillariophyceae. Teil 2: Bacillariaceae, Epithemiaceae, Surirellaceae. VEB Gustav Fischer Verlag, Jena, 596 pp.Google Scholar
  17. Krammer, K. & H. Lange-Bertalot, 1989. In: Cramer, J. (ed.), Achnanthes. Eine Monographie der Gattung. Berlin-Stuttgart, 393 pp.Google Scholar
  18. Krammer, K. & H. Lange-Bertalot, 1991. Süsswasserflora von Mitteleuropa. Bacillariophyceae. Teil 3: Centrales, Fragilariaceae, Eunotiaceae. VEB Gustav Fischer Verlag, Jena, 576 pp.Google Scholar
  19. Nguetsop, V.-F., M. Servant & S. Servant-Vildary, 1998. Paléolimnologie et paléoclimatologie de l'Ouest-Cameroun au cours des 5 000 dernières années, à partir de l'étude des diatomées du lac Ossa. C. R. Acad. Sci. Paris 327: 39–45.Google Scholar
  20. Reed, J. M., 1998. A diatom-conductivity transfer function for Spanish salt lakes. J. Paleolim. 19: 399–416.Google Scholar
  21. Risacher, F., 1992. Géochimie des lacs salés et croûtes de sel de l'Altiplano bolivien. Sci. Géol. Bull. 45: 219 pp.Google Scholar
  22. Risacher, F. & B. Fritz, 1991. Geochemistry of Bolivian salars, Lipez, southern Altiplano: origin of solutes and brine evolution. Geoch. Cosmoch. Acta. 55: 687–705.Google Scholar
  23. Roberts, D. & A. McMinn, 1998. A weighted-averaging regression and calibration model for inferring lakewater salinity from fossil diatom assemblages in saline lakes of Vestfold Hills: a new tool for interpreting Holocene lake histories in Antarctica. J. Paleolim. 19: 99–113.Google Scholar
  24. Roux, M., 1985. Algorithmes de classification. Méthodes + Programme. Masson, Paris, 151 pp.Google Scholar
  25. Roux, M., S. Servant-Vildary & M. Servant, 1991. Inferred ionic composition and salinity of a Bolivian Quaternary lake as estimed from fossil diatoms in the sédiments. Hydrobiologia 210: 3–18.Google Scholar
  26. Servant, M. & J. C. Fontes, 1978. Les lacs quaternaires des hauts plateaux des Andes Boliviennes. Premières interprétations paléoclimatiques. Cah. O.R.S.T.O.M. Sér. Géol. 10: 9–23.Google Scholar
  27. Servant, M., M. Fournier, J. Argollo, S. Servant-Vildary, F. Sylvestre, D. Wirrmann & J. P. Ybert, 1995. La dernière transition glaciaire/ interglaciaire des Andes tropicales sud (Bolivie) d'après l'étude des variations des niveaux lacustres et des fluctuations glaciaires. C.R. Acad. Sci. Paris 320: 729–736.Google Scholar
  28. Servant-Vildary, S., 1978. Les diatomées des sédiments superficiels d'un lac salé, chloruré, sulfaté sodique de l'Altiplano bolivien, le lac Poopò. Cah. O.R.S.T.O.M. Sér. Géol. 10: 79–90.Google Scholar
  29. Servant-Vildary, S., 1984. Les diatomées des lacs sursalés boliviens. sous-classe des pennatophycidées. I-Famille des nitzschiacées. Cah. O.R.S.T.O.M. Sér. Géol. 14: 35–53.Google Scholar
  30. Servant-Vildary, S. & M. Roux, 1990. Multivariate analysis of diatoms and water chemistry in Bolivian saline lakes. Hydrobiologia 197: 267–290.Google Scholar
  31. Servant-Vildary, S. & S. H. Mello e Sousa, 1993. Paleohydrology of the Quaternary saline Lake Ballivian (southern Bolivian Altiplano) based on diatom studies. Int. J. Salt Lake Res. 2: 69–85.Google Scholar
  32. Sylvestre, F., 1997. La dernière transition glaciaire-interglaciaire (18 000–8000 14C ans B.P.) dans les Andes tropicales sud (Bolivie) d'après l'étude des diatomées. Ph.D Musée National d'Histoire Naturelle, Paris, 317 pp.Google Scholar
  33. Sylvestre, F., M. Servant, S. Servant-Vildary, C. Causse & M. Fournier, 1999. Lake-level chronology in the south Bolivian Altiplano (18–23 ° S) during Late-Glacial and early Holocene times based on radiocarbon, U/Th ages and diatom studies. Quat. Res. 51: 54–66.Google Scholar
  34. ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.Google Scholar
  35. ter Braak, C. J. F. & H. van Dam, 1989. Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia 178: 209–223.Google Scholar
  36. Ward, J. H., 1963. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58: 236–244.Google Scholar
  37. Wilson, S. E., B. F. Cumming & J. P. Smol, 1994. Diatom-salinity relationships in 111 lakes from the Interior Plateau of British Columbia, Canada: the development of diatom-based models for paleosalinity reconstructions. J. Paleolim. 12: 197–221.Google Scholar
  38. Wilson, S. E., B. F. Cumming & J. P. Smol, 1996. Assessing the reliability of salinity inference models from diatom assemblages: An examination of 219-lake data set from western North America. Can. J. Fish. Aquat. Sci. 53: 1580–1594.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • F. Sylvestre
    • 1
  • S. Servant-Vildary
    • 2
  • M. Roux
    • 3
  1. 1.Laboratoire de GéologieUniversité d'Angers, EA 2544AngersFrance
  2. 2.Laboratoire de GéologieAntenne IRD ex Orstom, Museum National d'Histoire NaturelleParisFrance
  3. 3.Laboratoire de BiomathématiquesUniversité Aix-Marseille 3MarseilleFrance

Personalised recommendations