Reconstructing fluctuations of a shallow East African lake during the past 1800 yrs from sediment stratigraphy in a submerged crater basin

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The sedimentology of an 8.22-m long core of late-Holocene deposits in the submerged Crescent Island Crater basin of Lake Naivasha, Kenya, is used to reconstruct decade-scale fluctuations in lake-surface elevation during the past 1800 yrs. Lake-depth inference for the past 1000 yrs is semi-quantitative, based on (1) relationships between lake level and bottom dynamics predicted by wave theory, and (2) historical validation of the effects of lake-level fluctuation and hydrologic closure on sediment composition in Crescent Island Crater and nearby Lake Oloidien. In these shallow fluctuating lakes, organic-carbon variation in a lithological sequence from clayey mud to algal gyttja is positively correlated with lake depth at the time of deposition, because the focusing of oxidized littoral sediments which dilute autochthonous organic matter before burial is reduced during highstands. The lake-level reconstruction for Lake Naivasha agrees with other adequately dated lake-level records from equatorial East Africa in its implication of dry climatic conditions during the Mediaeval Warm Period and generally wet conditions during the Little Ice Age. Crescent Island Crater survived widespread aridity in the early-19th century as a fresh weedy pond, while the main basin of Lake Naivasha and many other shallow East African lakes fell dry and truncated their sediment archive of Little Ice Age climatic variability.

This is a preview of subscription content, log in to check access.

References

  1. Appleby, P. G. & F. Oldfield, 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5: 1–8.

    Google Scholar 

  2. Åse, L.-E., K. Sernbo & P. Syrén, 1986. Studies of Lake Naivasha, Kenya, and its drainage area. Forskningsrapp. Naturgeogr. Inst. Stockholms Univ. 63: 1–75.

    Google Scholar 

  3. Barton, C. E., D. K. Solomon, J. R. Bowman, T. E. Cerling & M. D. Sayer, 1987. Chloride budgets in transient lakes: lakes Baringo, Naivasha, and Turkana. Limnol. Oceanogr. 32: 745–751.

    Google Scholar 

  4. Beadle, L. C., 1932. Scientific results of the Cambridge expedition to the east African lakes, 1930–1931. 4. The waters of some East African lakes in relation to their fauna and flora. J. Linn. Soc. (Zool.) 38: 157–211.

    Google Scholar 

  5. Bonnefille, R. & U. Mohammed, 1994. Pollen-inferred climatic fluctuations in Ethiopia during the last 3000 yrs. Palaeogeogr. Palaeoclimatol. Palaeoecol. 109: 331–343.

    Google Scholar 

  6. Bradley, R. S. & P. Jones, 1993. 'Little Ice Age' summer temperature variations: their nature and relevance to recent global warming trends. Holocene 3: 367–376.

    Google Scholar 

  7. Cohen, A. S., M. R. Talbot, S. M. Awramik, D. L. Dettman & P. Abell, 1997. Lake level and paleoenvironmental history of Lake Tanganyika, Africa, as inferred from late Holocene and modern stromatolites. Geol. Soc. Am. Bull. 109: 444–460.

    Google Scholar 

  8. Crossley, R., S. Davison-Hirschmann, R. B. Owen & P. Shaw, 1984. Lake-level fluctuations during the last 2,000 yrs in Malawi. In J. C. Vogel (ed.), Late Cenozoic Palaeoclimates of the Southern Hemisphere, Balkema, Rotterdam, 305–316.

  9. Darling, W. G., D. J. Allen & H. Armannsson, 1990. Indirect detection of subsurface outflow from a rift valley lake. J. Hydrol. 113: 297–305.

    Google Scholar 

  10. Dean, W. E., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J. Sed. Petrol. 44: 242–248.

    Google Scholar 

  11. Dean, W. E. & E. Gorham, 1976. Major chemical and mineral components of profundal surface sediments in Minnesota lakes. Limnol. Oceanogr. 21: 259–284.

    Google Scholar 

  12. Dearing, J. A., 1997. Sedimentary indicators of lake-level changes in the humid temperate zone: a critical review. J. Palaeolim. 18: 1–14.

    Google Scholar 

  13. DeMaster, D. J., 1981. The supply and accumulation of silica in the marine environment. Geochim. Cosmochim. Acta 45: 1715–1732.

    Google Scholar 

  14. Digerfeldt, G., 1986. Studies on past lake-level fluctuations. In B. E. Berglund (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, New York, 127–143.

    Google Scholar 

  15. Fontes, J.-Ch., 1992. Chemical and isotopic constraints on 14C dating of groundwater. In R. E. Taylor, A. Long & R. S. Kra (eds), Radiocarbon After 4 Decades: An Interdisciplinary Perspective. Springer, New York, 242–261.

    Google Scholar 

  16. Gaudet, J. J. & J. M. Melack, 1981. Major ion chemistry in a tropical African lake basin, Freshwat. Biol. 11: 309–333.

    Google Scholar 

  17. Håkanson, L., 1977. The influence of wind, fetch, and water depth on the distribution of sediments in Lake Vänern, Sweden. Can. J. Earth Sci. 14: 397–412.

    Google Scholar 

  18. Håkanson, L., 1982. Lake bottom dynamics and morphometry-the dynamic ratio. Wat. Resources Res. 18: 1444–1450.

    Google Scholar 

  19. Halfman, J. D., T. C. Johnson & B. P. Finney, 1994. New AMS dates, stratigraphic correlations and decadal climatic cycles for the past 4 ka at Lake Turkana, Kenya. Palaeogeogr. Palaeoclimatol. Palaeoecol. 111: 83–98.

    Google Scholar 

  20. Harper, D. M., K. M. Mavuti & S. M. Muchiri, 1990. Ecology and management of Lake Naivasha, Kenya, in relation to climatic change, alien species' introductions, and agricultural development. Envir. Conserv. 17: 328–336.

    Google Scholar 

  21. Harper, D. M., G. Phillips, A. Chilvers, N. Kitaka & K. Mavuti, 1993. Eutrophication prognosis for Lake Naivasha, Kenya, Verh. Internat. Verein. Limnol. 25: 861–865.

    Google Scholar 

  22. Hilton, J., 1985. A conceptual framework for predicting the occurrence of sediment focusing and sediment redistribution in small lakes. Limnol. Oceanogr. 30: 1131–1143.

    Google Scholar 

  23. Kemp, A. E. S. & J. G. Baldauf, 1993. Vast Neogene laminated diatom mat deposits from the eastern equatorial Pacific Ocean. Nature 362: 141–144.

    Google Scholar 

  24. Leonard, E. M., 1986. Use of lacustrine sedimentary sequences as indicators of Holocene glacial activity, Banff National Park, Alberta, Canada. Quat. Res. 26: 218–231.

    Google Scholar 

  25. MacIntyre, S. & J. M. Melack, 1982. Meromixis in an equatorial African soda lake. Limnol. Oceanogr. 27: 595–609.

    Google Scholar 

  26. Maley, J., 1976. Les variations du lac Tchad depuis un millenaire: conséquences paleoclimatiques. Palaeoecol. Afr. 9: 44–47.

    Google Scholar 

  27. Nicholson, S. E., 1995. Environmental change within the historical period. In A. S. Goudie, W. M. Adams & A. Orme (eds), The Physical Geography of Africa. Oxford University Press, Oxford, 60–75.

    Google Scholar 

  28. Ojiambo, B. S. & W. B. Lyons, 1996. Residence times of major ions in Lake Naivasha, Kenya, and their relationship to lake hydrology. In T. C. Johnson & E. Odada (eds), The Limnology, Climatology and Paleoclimatology of the East African Lakes. Gordon & Breach, Newark, 267–278.

    Google Scholar 

  29. Owen, R. B. & R. Crossley, 1989. Recent sedimentation in lakes Chilwa and Chiuta, Malawi. Palaeoecol. Afr. 20: 109–117.

    Google Scholar 

  30. Owen, R. B., R. Crossley, T. C. Johnson, D. Tweddle, I. Kornfield, S. Davison, D. Eccles & D. R. Engstrom, 1990. Major low levels of Lake Malawi and their implications for speciation rates in cichlid fish. Proc. Roy. Soc. Lond. B240: 519–553.

    Google Scholar 

  31. Richardson, J. L. & R. A. Dussinger, 1986. Paleolimnology of midelevation lakes in the Kenya Rift Valley. Hydrobiologia 143: 167–174.

    Google Scholar 

  32. Richardson, J. L. & A. E. Richardson, 1972. History of an African Rift lake and its climatic implications. Ecol. Monogr. 42: 499–534.

    Google Scholar 

  33. Round, F. E., 1981. The ecology of algae. Cambridge University Press, Cambridge.

    Google Scholar 

  34. Rowan, D. J., J. Kalff & J. B. Rasmussen, 1992. Estimating the mud deposition boundary depth in lakes from wave theory. Can. J. Fish. Aquat. Sci. 49: 2490–2497.

    Google Scholar 

  35. Smetacek, V. S., 1985. Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Mar. Biol. 84: 239–251.

    Google Scholar 

  36. Souch, C., 1994. A methodology to interpret downvalley lake sediments as records of neoglacial activity: Coast Mountains, British Columbia, Canada. Geogr. Ann. 76A: 169–185.

    Google Scholar 

  37. Stager, J. C., B. Cumming & L. Meeker, 1997. A high-resolution 11,400-yr diatom record from Lake Victoria, east Africa. Quat. Res. 47: 81–89.

    Google Scholar 

  38. Stuiver, M. & P. J. Reimer, 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35: 215–230.

    Google Scholar 

  39. Talbot, M. R. & P. A. Allen, 1996. Lakes. In H. G. Reading (ed.), Sedimentary Environments: Processes, Facies, and Stratigraphy. Blackwell, Oxford, 83–124.

    Google Scholar 

  40. Tiercelin, J. J. et al., 1987. Le demi-graben de Baringo-Bogoria, Rift Gregory, Kenya: 30.000 ans d'histoire hydrologique et sédimentaire. Bull. Centr. Rech. Expl.-Prod. Elf-Aquitaine 11: 249–540.

    Google Scholar 

  41. Tyson, P. D. & J. A. Lindesay, 1992. The climate of the last 2000 yrs in southern Africa. Holocene 2: 271–278.

    Google Scholar 

  42. Verschuren, D., 1993. A lightweight extruder for accurate sectioning of soft-bottom lake sediment cores in the field. Limnol. Oceanogr. 38: 1796–1802.

    Google Scholar 

  43. Verschuren, D., 1996. Comparative paleolimnology in a system of four shallow, climate-sensitive tropical lake basins. In T. C. Johnson and E. Odada (eds), The Limnology, Climatology and Paleoclimatology of the East African Lakes. Gordon & Breach, Newark, 559–572.

    Google Scholar 

  44. Verschuren, D., 1999a. Sedimentation controls on the preservation and time resolution of climate-proxy records from shallow fluctuating lakes. Quat. Sci. Rev. 18: 821–837.

    Google Scholar 

  45. Verschuren, D., 1999b. Influence of lake depth and mixing regime on sedimentation in a small, fluctuating tropical soda lake. Limnol. Oceanogr. 44: 1103–1113.

    Google Scholar 

  46. Verschuren, D., J. Tibby, P. R. Leavitt & C. N. Roberts, 1999. The environmental history of a climate-sensitive lake in the former 'White Highlands' of central Kenya. Ambio 28: 494–501.

    Google Scholar 

  47. Verschuren, D., J. Tibby, K. Sabbe & C. N. Roberts, 2000. Effects of lake level, salinity and substrate on the invertebrate community of a fluctuating tropical lake. Ecology, 81: 164–182.

    Google Scholar 

  48. Whitmore, T. J., M. Brenner & C. L. Schelske, 1996. Highly variable sediment distribution in shallow, wind-stressed lakes: a case for sediment-mapping surveys in paleolimnological studies. J. Paleolim. 15: 207–221.

    Google Scholar 

  49. Wright, H. E. Jr., 1967. A square-rod piston sampler for lake sediments. J. Sed. Petrol. 37: 975–976.

    Google Scholar 

  50. Wright, H. E. Jr., 1980. Coring of soft lake sediments. Boreas 9: 107–114.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Verschuren, D. Reconstructing fluctuations of a shallow East African lake during the past 1800 yrs from sediment stratigraphy in a submerged crater basin. Journal of Paleolimnology 25, 297–311 (2001). https://doi.org/10.1023/A:1011150300252

Download citation

  • Africa
  • diatom mats
  • lake level
  • Little Ice Age
  • Mediaeval Warm Period
  • organic carbon
  • paleoclimate
  • sedimentology