Skip to main content
Log in

Structure-toxicity relationships of polycyclic aromatic hydrocarbons using molecular quantum similarity

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The establishment of quantitative structure-activity relationship (QSAR) models for the toxicity of polycylic aromatic hydrocarbons (PAHs) is described. Two properties, in vitro percutaneous absorption in rat skin and discrete levels of carcinogenic activity, are examined using molecular quantum similarity measures (MQSM). The results show that MQSM produces comparable, or even better, results than other approaches using physicochemical, topological and quantum-chemical molecular descriptors. Furthermore, a careful analysis puts into evidence that most of the information characterized by the original descriptors is in fact contained in the molecular density functions, the basis of MQSM. The present paper, together with several other reported by our laboratory, proves that MQSM might be appropriate theoretical tools for QSAR and computer-aided drug design, comparable to other highly predictive QSAR methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grimmer, G. (Ed.) Environmental Carcinogens, Polycyclic Aromatic Hydrocarbons, Chemistry, Occurrence, Biochemistry, Carcinogenicity, CRC Press, Boca Raton, FL, 1983.

    Google Scholar 

  2. Taylor, P., Dellinger, B. and Lee, C.C., Environ. Sci. Technol., 24 (1990) 316.

    Google Scholar 

  3. Grimmer, G., Naujac, K.W., Dettbarn, G., Brune, H., Deutsch-Wenzel, R. and Misfeld, J., In Cooke, M., Dennis, A.J. and Fisher, G.L. (Eds.) Polynucleic Aromatic Hydrocarbons: Physics, Biology, and Chemistry, 6th International Symposium, Bartelle Press, Columbus, OH, 1981.

    Google Scholar 

  4. Freeman, D.J. and Cattell, F.C.R., Environ. Sci. Technol., 24 (1990) 1581.

    Google Scholar 

  5. Takada, H., Onda, T. and Ogura, N., Environ. Sci. Technol., 24 (1990) 1179.

    Google Scholar 

  6. Pott, P., Surgical observations relative to the cancer of the scrotum. (1775). Reprinted in Natl. Cancer Inst. Monogr. 10 (1973) 7.

    Google Scholar 

  7. United States Environmental Protection Agency (EPA). Integrated Risk Information System (IRIS). Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, Cincinnati, OH, 1994.

    Google Scholar 

  8. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Polycyclic Aromatic Hydrocarbons. Acenaphthene, Acenaphthylene, Anthracene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(g,i,h)perylene, Benzo(k)fluoranthene, Chrysene, Dibenzo(a,h)anthracene, Fluoranthene, Fluorene, Indeno(1,2,3-c,d)pyrene, Phenanthrene, Pyrene. Prepared by Clement International Corporation, under Contract No. 205-88-0608. ATSDR/TP-90-20, 1990.

  9. International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Polynuclear Aromatic Compounds. Part 1. Chemical, Environmental and Experimental Data, Vol. 32. World Health Organization, Lyon, 1983.

    Google Scholar 

  10. Govers, H.A.J., In Karcher, W. and Devillers, J. (Eds.) Practical Applications of Quantitative Structure-Activity Relationships (QSAR) in Environmental Chemistry and Toxicology, Kluwer, Dordrecht, 1990.

    Google Scholar 

  11. Harvey, R.G. and Geacintov, N.E., Acc. Chem. Res., 21 (1988) 66.

    Google Scholar 

  12. Dipple, A., In Searle, C.E. (Ed.) Polynuclear Aromatic Carcinogens, Chemical Carcinogens, American Chemical Society, Washington, DC, 1976.

    Google Scholar 

  13. Dipple, A., Moschel, R.C. and Bigger, C.A.H., In Searle, C.E. (Ed.) Polynuclear Aromatic Carcinogens, Chemical Carcinogens, 2nd Ed., American Chemical Society, Washington, DC, 1984.

    Google Scholar 

  14. Schmidt, O.Z., Physik. Chem., B42 (1939) 83.

    Google Scholar 

  15. Pullman, A. and Pullman, B., Rev. Sci., 84 (1946) 145.

    Google Scholar 

  16. Pullman, A. and Pullman, B., Adv. Cancer Res., 3 (1955) 117.

    Google Scholar 

  17. Gayoso, J. and Kimri, S., Int. J. Quantum Chem., 38 (1990) 461.

    Google Scholar 

  18. Gayoso, J. and Kimri, S., Int. J. Quantum Chem., 38 (1990) 487.

    Google Scholar 

  19. Jerina, D.M., Lehr, R.E., Schaefer, R.M., Yagi, H., Karle, J.M., Thakker, D.R., Wood, A.W. and Conney, A.H., In Hiatt, H., Watson, J.D. and Winstin, I. (Eds.) Origins of Human Cancer, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1977.

    Google Scholar 

  20. Ulrich, V., Roots, I., Hildebrant, A.G. and Eatabrook, R.K.W., In Conney, A.H. (Ed.) Microsomes and Drug Oxidations, Pergamon Press, Oxford, 1977.

    Google Scholar 

  21. Geacintov, N.E., In Cooke, M., Dennis, A.J. and Fisher, G.L. (Eds.) Polynuclear Aromatic Hydrocarbons: Physics, Biology, and Chemistry, 6th International Symposium, Bartelle Press, Columbus, OH, 1981.

    Google Scholar 

  22. Hodgson, R.M., Cary, P.D., Grover, P.L. and Sims, P., Carcinogenesis (London), 4 (1983) 1153.

    Google Scholar 

  23. Silverman, J.P.B.D., Acc. Chem. Res., 17 (1984) 332.

    Google Scholar 

  24. Szentpály, L.V., J. Am. Chem. Soc., 106 (1984) 6021.

    Google Scholar 

  25. Kimri, S. and Gayoso, J., J. Mol. Struct. (THEOCHEM), 362 (1996) 141.

    Google Scholar 

  26. Hansch, C. and Fujita, T., J. Am. Chem. Soc., 86 (1964) 1616.

    Google Scholar 

  27. Nordén, U.E. and Wold, S., Acta Chem. Scand., B32 (1978) 602.

    Google Scholar 

  28. Klopman, G., J. Am. Chem. Soc., 106 (1984) 7315.

    Google Scholar 

  29. Lall, R.S., Match., 15 (1984) 251.

    Google Scholar 

  30. Villemin, B., Cherqaoui, D. and Mesbah, A., J. Chem. Inf. Comput. Sci., 34 (1994) 1288.

    Google Scholar 

  31. Isu, Y., Nagashima, U., Aoyama, T. and Haruo, H., J. Chem. Inf. Comput. Sci., 36 (1996) 286.

    Google Scholar 

  32. Carbó, R., Arnau, J. and Leyda, L., Int. J. Quantum Chem., 17 (1980) 1185.

    Google Scholar 

  33. Carbó, R., BesalÚ, E., Amat, L. and Fradera, X., J. Math. Chem., 18 (1995) 237.

    Google Scholar 

  34. Fradera, X., Amat, L., BesalÚ, E. and Carbó-Dorca, R., Quant. Struct.-Act. Relat., 16 (1997) 25.

    Google Scholar 

  35. Lobato, M., Amat, L., BesalÚ, E. and Carbó-Dorca, R., Quant. Struct.-Act. Relat., 16 (1997) 465.

    Google Scholar 

  36. Amat, L., Robert, D., BesalÚ, E. and Carbó-Dorca, R., J. Chem. Inf. Comput. Sci., 39 (1998) 624.

    Google Scholar 

  37. Amat, L., Carbó-Dorca, R. and Ponec, R., J. Comput. Chem., 19 (1998) 1575.

    Google Scholar 

  38. Robert, D., Amat, L. and Carbó-Dorca, R., J. Chem. Inf. Comput. Sci., 39 (1999) 333.

    Google Scholar 

  39. Ponec, R., Amat, L. and Carbó-Dorca, R., J. Phys. Org. Chem., 12 (1999) 447.

    Google Scholar 

  40. Ponec, R., Amat, L. and Carbó-Dorca, R., J. Comput.-Aided Mol. Design, 13 (1999) 259.

    Google Scholar 

  41. Robert, D., Gironés, X. and Carbó-Dorca, R., J. Comput.-Aided Mol. Design, 13 (1999) 597.

    Google Scholar 

  42. Amat, L., Carbó-Dorca, R. and Ponec, R., J. Med. Chem., 42 (1999) 5162.

    Google Scholar 

  43. Robert, D., Gironés, X. and Carbó-Dorca, R., J. Chem. Inf. Comput. Sci., 40 (2000) 839.

    Google Scholar 

  44. Gironés, X., Amat, L., Robert, D. and Carbó-Dorca, R., J. Comput.-Aided Mol. Design, 14 (2000) 477.

    Google Scholar 

  45. Robert, D., Gironés, X. and Carbó-Dorca, R., SAR QSAR Environ. Res., 10 (1999) 401.

    Google Scholar 

  46. Gironés, X., Amat, L. and Carbó-Dorca, R., SAR QSAR Environ. Res., 10 (1999) 545.

    Google Scholar 

  47. Constans, P., Amat, L. and Carbó-Dorca, R., J. Comput. Chem., 18 (1997) 826.

    Google Scholar 

  48. Solà, M., Mestres, J., Carbó, R. and Duran, M., J. Am. Chem. Soc., 116 (1994) 5909.

    Google Scholar 

  49. Mezey, P.G., Ponec, R., Amat, L. and Carbó-Dorca, R., Enantiomeres, 4 (1999) 371.

    Google Scholar 

  50. Forés, M., Duran, M. and Solà, M., TMMEC, 1 (1997) 50.

    Google Scholar 

  51. Solà, M., Mestres, J., Carbó, R. and Duran, M., J. Chem. Phys., 104 (1996) 636.

    Google Scholar 

  52. Carbó-Dorca, R. and BesalÚ, E., J. Mol. Struct. (THEOCHEM), 451 (1998) 11.

    Google Scholar 

  53. Carbó-Dorca, R., Amat, L., BesalÚ, E. and Lobato, M., In Carbó-Dorca, R. and Mezey, P.G. (Eds.), Advances in Molecular Similarity, Vol. 2, JAI Press, Greenwich, CT, 1998.

    Google Scholar 

  54. Carbó-Dorca, R., BesalÚ, E., Amat, L. and Fradera, X., In Carbó-Dorca, R. and Mezey, P.G. (Eds.), Advances in Molecular Similarity, Vol. 1, JAI Press, Greenwich, CT, 1996.

    Google Scholar 

  55. Carbó, R. and BesalÚ, E., In Carbó, R. (Ed.) Molecular similarity and reactivity: from quantum chemical to phenomenological approaches, Kluwer, Dordrecht, 1995.

    Google Scholar 

  56. Carbó-Dorca, R., Amat, L., BesalÚ, E., Gironés, X. and Robert, D., In Carbó-Dorca, R. and Mezey, P.G. (Eds.) The Fundamentals of Molecular Similarity, Kluwer, Dordrecht, to be published.

  57. Carbó-Dorca, R., Amat, L., BesalÚ, E., Gironés, X. and Robert, D., J. Mol. Struct. (THEOCHEM), 504 (2000) 181.

    Google Scholar 

  58. Carbó, R. and Domingo, L., Int. J. Quantum Chem., 23 (1987) 517.

    Google Scholar 

  59. Amat, L. and Carbó-Dorca, R., J. Comput. Chem., 18 (1997) 2023.

    Google Scholar 

  60. Amat, L. and Carbó-Dorca, R., J. Comput. Chem., 20 (1999) 911.

    Google Scholar 

  61. ASA coefficients and exponents for an assorted sample of atoms can be seen and downloaded from the website: http://iqc.udg.es/cat/similarity/ASA/funcset.html

  62. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F. and Stewart, J.J.P., J. Am. Chem. Soc., 107 (1985) 3902.

    Google Scholar 

  63. AMPAC 6.55, 1999 Semichem, 7128 Summit, Shawnee, KS 66216 D.A.

  64. Constans, P., Amat, L. and Carbó-Dorca, R., J. Comput. Chem., 18 (1997) 826.

    Google Scholar 

  65. McMahon, A.J. and King, P.M., J. Comput. Chem., 18 (1997) 151.

    Google Scholar 

  66. Parretti, M.F., Kroemer, R.T., Rothman, J.H. and Richards, W.G., J. Comput. Chem., 18 (1997) 1344.

    Google Scholar 

  67. Amat, L., Constans, P., BesalÚ, E. and Carbó-Dorca, R., MOLSIMIL 97, Institute of Computational Chemistry, University of Girona, Spain, 1997.

    Google Scholar 

  68. Cox, T.F. and Cox, M.A.A., Multidimensional Scaling, Chapman & Hall, London, 1994.

    Google Scholar 

  69. Cuadras, C.M. and Arenas, C., Commun. Stat. Theor. Method., 19 (1990) 2261.

    Google Scholar 

  70. Wold, S. and Eriksson, L., In Van der Waterbeemd, H. (Ed.) Chemometric methods in molecular design, VCH, New York, NY, 1995.

    Google Scholar 

  71. Amat, L., Robert, D. and BesalÚ, E., TQSAR-SIM, Institute of Computational Chemistry, University of Girona, Spain, 1997.

    Google Scholar 

  72. Yang, J.J., Roy, T.A., Neil, W. and Krueger, A.J., Toxicol. Ind. Hlth., 3 (1987) 405.

    Google Scholar 

  73. Yang, J.J., Roy, T.A. and Mackerer, C.R., Toxicol. Ind. Hlth., 2 (1986) 409.

    Google Scholar 

  74. Yang, J.J., Roy, T.A. and Mackerer, C.R., Toxicol. Ind. Hlth., 2 (1986) 79.

    Google Scholar 

  75. Roy, T.A., Krueger, A.J., Mackerer, C.R., Neil, W., Arroyo, A.M. and Yang, J.J., SAR QSAR Environ. Res., 9 (1998) 171.

    Google Scholar 

  76. Structures and coordinates can be seen and downloaded from the website: http://iqc.udg.es/cat/similarity/QSAR/PAHs.html

  77. Gute, B.D., Grundwald, G.D. and Basak, S.C., SAR QSAR Environ. Res., 10 (1999) 1.

    Google Scholar 

  78. Kubinyi, H. (Ed.) QSAR: Hansch Analysis and Related Approaches, VCH, Weinheim, 1993.

    Google Scholar 

  79. Stuper, A.J., Brugger, W.E. and Jurs, P.C., Computer Assisted Studies of Chemical Structure and Biological Function, Wiley, New York, NY, 1979.

    Google Scholar 

  80. Potts, R.O. and Guy, R.H., Pharm. Res., 9 (1992) 663.

    Google Scholar 

  81. Berger, D., Smith, A., Seybold, G. and Serve, M.P., Tetrahedron Lett., 3 (1978) 231.

    Google Scholar 

  82. Sjentplay, L.V., J. Am. Chem. Soc., 106 (1984) 6021.

    Google Scholar 

  83. Cavalieri, E.L., Rogan, E.G., Roth, R.W., Saugier, R.K. and Hakan, A., Chem. Biol. Interact., 47 (1983) 87.

    Google Scholar 

  84. Sakamoto, Y. and Watanabe, S., Bull. Chem. Soc. Jpn., 59 (1986) 3033.

    Google Scholar 

  85. Barone, P.M.V.B., Camilo, A., Jr. and Galvão, D.S., Phys. Rev. Lett., 77 (1996) 1186.

    Google Scholar 

  86. Braga, R.S., Barone, P.M.V.B. and Galvao, D.S., J. Mol. Struct. (THEOCHEM), 464 (1999) 257.

    Google Scholar 

  87. Streitwieser, A., Molecular Orbital Theory, Wiley, New York, NY, 1961.

    Google Scholar 

  88. Vendrame, R., Braga, R.S., Takahata, Y. and Galvão, D.S., J. Chem. Inf. Comput. Sci., 39 (1999) 1094.

    Google Scholar 

  89. Iball, J., Am. J. Cancer, 35 (1939) 188.

    Google Scholar 

  90. Badger, G.M., Br. J. Cancer, 2 (1948) 309.

    Google Scholar 

  91. Benigni, R., Andreoli, C. and Giuliani, A., Environ. Mol. Mutagen., 24 (1994) 208.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallegos, A., Robert, D., Gironés, X. et al. Structure-toxicity relationships of polycyclic aromatic hydrocarbons using molecular quantum similarity. J Comput Aided Mol Des 15, 67–80 (2001). https://doi.org/10.1023/A:1011150003086

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011150003086

Navigation