Journal of Oceanography

, Volume 57, Issue 2, pp 207–234 | Cite as

Heat and Freshwater Budgets and Pathways in the Arctic Mediterranean in a Coupled Ocean/Sea-ice Model

  • Xiangdong Zhang
  • Jing Zhang
Article

Abstract

The Arctic Mediterranean is important for climate studies because of its unique thermodynamic characteristics and its potential role in freshwater export, which would influences air-sea and ice-sea interactions and may change the North Atlantic thermohaline circulation. It is difficult to obtain consistent and complete estimates of heat and freshwater budgets due to sparse observation. In this paper, we use a coupled Arctic ocean/sea-ice model with NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis data, long-term gauged river runoff data, precipitation data and estimates of volume transports to examine heat and freshwater budgets and pathways in dynamically and thermodynamically consistence. The model implements “Neptune effect”, flux-corrected-transport algorithm and more sophisticated treatments of heat and freshwater fluxes. Uncertainties and deficiencies in the modeling were also evaluated. Results indicate that the Arctic Ocean is provided heat mainly from the Fram Strait branch of Atlantic water at about 46 TW, which is within the range in literature. The Barents Sea branch carries about 43 TW of net heat entering the Barents Sea, but only 2 TW of net heat enters the Arctic Ocean. The Atlantic water is significantly modified in the Barents Sea. About 39 TW of heat is lost, which is consistent with the range of estimates by Simonsen and Haugan (1996). The model suggests 79,422 km3 of freshwater storage mainly distributing the Canada Basin, the Beaufort Sea and the Eurasian coast, which is in a good agreement with estimate by Aagaard and Carmack (1989). Freshwater origins from river runoff, precipitation and the Bering Strait throughflow. Liquid freshwater mainly exports via the Canadian Archipelago and Fram Strait at the rates of 3100 km3/yr and 1400 km3/yr. Sea-ice is dominantly transported through Fram Strait with 1923 km3/yr. Model discrepancies exist and climate drift is clear, which require comprehensive physical treatments of mixing processes and dense water processes in the model.

Heat and freshwater budget and pathways Arctic ocean sea ice coupled model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aagaard, K. and E. C. Carmack (1989): The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res., 94, 14,485-14,497.Google Scholar
  2. Aagaard, K. and E. C. Carmack (1994): The Arctic Ocean and climate: A perspective. p. 33-46. In The Polar Ocean and Their Role in Shaping the Global Environment, ed. by O. M. Johannessen, R. D. Muench and J. E. Overland, Geophys. Monogr. Ser., Vol. 85, AGU, Washington, D.C.Google Scholar
  3. Aagaard, K. and L. K. Coachman (1968): The East Greenland Current north of Denmark Strait: Part I. J. Arctic Inst. North America, 21, 181-199.Google Scholar
  4. Aagaard, K. and P. Greisman (1975): Toward new mass and heat budgets for the Arctic Ocean. J. Geophys. Res., 80, 3821-3827.Google Scholar
  5. Aagaard, K., L. K. Coachman and E. Carmack (1981): On the halocline of the Arctic Ocean. Deep Sea Res., Part A, 28, 529-545.Google Scholar
  6. Arctic System Science (1990): Ocean-Atmosphere-Ice Interactions. Joint Oceanography Institute, Washington, D.C., 132 pp.Google Scholar
  7. Barry, R. G., M. C. Serreze and J. A. Maslanik (1993): The Arctic sea-ice climate system: Observations and modeling. Rev. Geophys., 31, 397-422.Google Scholar
  8. Baumgartner, A. and E. Reichel (1975): The World Water Balance: Mean Annual Global, Continental and Maritime Precipitation, Evaperation and Run-off. Elsevier, New York, Amsterdam, 179 pp.Google Scholar
  9. Becker, P. (1995): The effect of Arctic hydrological cycles on Arctic Ocean circulation. Ph.D. Thesis, Old Dominion University, Norfolk, Virginia.Google Scholar
  10. Bjork, G. (1997): The relation between ice deformation, oceanic heat flux, and the ice thickness distribution in the Arctic Ocean. J. Geophys. Res., 102(C8), 18,681-18,698.Google Scholar
  11. Bryan, K. (1984): Accelerating the convergence to equilibrium of ocean-climate models. J. Phys. Oceanogr., 14, 666-673.Google Scholar
  12. Burova, L. P. (1981): Atmospheric water resources of the Arctic Basin. Tr. Arkt. Antarkt. Inst., 370, 91-110 (in Russian).Google Scholar
  13. Carmack, E. C. (1990): Large-scale oceanography. p. 172-222. In Polar Oceanography, Part A, ed. by W. O. Smith, Academic, San Diego.Google Scholar
  14. Carmack, E. C. (2000): Review of the Arctic Ocean's freshwater budget: Source, storage and export. p. 91-127. In Fresh-water Budget of Arctic Ocean, ed. by E. Lewis, Netherlands Press.Google Scholar
  15. Coachman, L. K. and K. Aagaard (1988): Transports through Bering Strait: Annual and interannual variability. J. Geophys. Res., 93, 15,535-15,539.Google Scholar
  16. Delworth, T. L., S. Manabe and R. Stouffer (1997): Multidedacal climate variability in the Greenland Sea and surrounding regions: A coupled model simulation. Geophys. Res. Lett., 24, 257-260.Google Scholar
  17. Dickson, R. R., J. Meinke, S. A. Malmberg and A. J. Lee (1988): The “Great Salinity Anomaly” in the northern North Atlantic 1968–1982. Prog. Oceanogr., 20, 103-151.Google Scholar
  18. Ebert, E. E. and J. A. Curry (1993): An intermediate one-dimensional thermodynamic sea ice model for investigating ice-atmosphere interactions. J. Geophys. Res., 98, 10,085-10,109.Google Scholar
  19. Efimova, N. A. (1961): On methods of calculating monthly values of net longwave radiation. Meteorol. Gidrol., 10, 28-33.Google Scholar
  20. Environmental Working Group (1997): Jiont U.S. Russian atlas of the Arctic Ocean, NSIDC/CIRES, University of Colorado.Google Scholar
  21. Fichefet, T. and M. A. M. Maqueda (1997): Sensitive of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res., 102, 12,609-12,646.Google Scholar
  22. Fissel, D. B., D. D. Lemon, H. Melling and R. A. Lake (1988): Non-tidal flows in the Northwest Passage. Can. Tech. Rep. Hydrogr. Ocean Sci., 98, Inst. of Ocean Sci., Sidney, B.C., Canada.Google Scholar
  23. Foldvik, A., K. Aagaard and T. Torresen (1988): On the velocity field of the East Greenland Current. Deep Sea Res., 35, 1335-1354.Google Scholar
  24. Gent, P. R., F. O. Bryan, G. Danabasoglu, S. C. Doney, W. R. Holland, W. G. Large and J. C. McWilliams (1998): The NCAR climate system model global ocean component. J. Clim., 11, 1287-1306.Google Scholar
  25. Gerdes, R. and U. Schauer (1997): Large-scale circulation and water mass distribution in the Arctic Ocean from model results and observations. J. Geophys. Res., 102, 8467-8483.Google Scholar
  26. Gerdes, R., C. Koberle and J. Willebrand (1991): The influence of numerical advection schemes on the results of ocean general circulation models. Clim. Dyn., 5, 211-226.Google Scholar
  27. Gnanadesikan, A. (1997): Representing the bottom boundary layer in the GFDL ocean model: Model framework, dynamical impacts, and parameter sensitivity. J. Phys. Oceanogr. (submitted).Google Scholar
  28. Gorshkov, S. G. (1983): World Ocean Atlas. Arctic Ocean 3, Pergamon, Tarrytown, New York.Google Scholar
  29. Grenfell, T. C. and G. A. Maykut (1977): The optical properties of ice and snow in the Arctic basin. J. Glaciol., 18, 445-463.Google Scholar
  30. Griffies, S. M. and K. Bryan (1997): A predictability study of simulated North Atlantic multidecadal variability. Clim. Dyn., 13, 459-487.Google Scholar
  31. Hakkinen, S. (1993): An Arctic source for the Great Salinity Anomaly: A simulation of the Arctic Ice-Ocean System for 1955–1975. J. Geophys. Res., 98, 16,387-16,410.Google Scholar
  32. Hakkinen, S. and D. J. Cavalieri (1989): A study of oceanic surface heat fluxes in the Greenland, Norwegian, and Barents Seas. J. Geophys. Res., 94, 6145-6157.Google Scholar
  33. Hanesiak, J. M., D. G. Barber, T. N. Papakyriakou and P. J. Minnett (2000): Parameterization schemes of incident radiation in the North Water. Atmos.-Ocean (submitted).Google Scholar
  34. Hellerman, S. and M. Rosenstein (1983): Normal monthly wind stress over the world ocean with error esstimates. J. Phys. Oceanogr., 13, 1093-1104.Google Scholar
  35. Hibler, W. D., III (1979): A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9, 815-846.Google Scholar
  36. Hibler, W. D., III and K. Bryan (1987): A diagnostic ice-ocean model. J. Phys. Oceanogr., 17, 987-1015.Google Scholar
  37. Hopkins, T. S. (1991): The GIN Sea—A synthesis of its physical oceanography and literature review 1972–1985. Earth Sci. Rev., 30, 175-319.Google Scholar
  38. Jacobs, J. D. (1978): Radiation climate of Broughton Island. p. 105-120. In Energy Budget Studies in Relation to Fast-ice Breakup Processes in Davis Strait, ed. by R. G. Barry and J. D. Jacobs, Occas. Pap. 26, Inst. of Arctic and Alp. Res., University of Colorado, Boulder.Google Scholar
  39. Jonsson, S. and A. Foldvik (1992): The transport and circulation in Fram Strait, Publ., CM 1992/C:10, Int. Counc. for the Expl. of the Sea Copenhagen.Google Scholar
  40. Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, A. Leetmaa, R. Reynolds and R. Jenne (1996): The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437-471.Google Scholar
  41. Key, J. R., R. A. Silcox and R. S. Stone (1996): Evaluation of surface radiative flux parameterizations for use in sea ice models. J. Geophys. Res., 101, 3839-3849.Google Scholar
  42. Kwok, R. and D. A. Rothrock (1999): Variability of Fram Strait ice flux and North Atlantic Oscillation. J. Geophys. Res., 104, 5177-5189.Google Scholar
  43. Large, W. G. and S. Pond (1981): Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324-336.Google Scholar
  44. Large, W. G. and S. Pond (1982): Sensible and latent heat flux measurements over the oceans. J. Phys. Oceanogr., 12, 464-482.Google Scholar
  45. Legates, D. R. and C. J. Willmott (1990): Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatology, 10, 111-127.Google Scholar
  46. Levitus, S. (1982): Climatological Atlas of the World Ocean, NOAA Prof. Paper No. 13, Washington, D.C., 173 pp.Google Scholar
  47. Macdonald, R. W., E. C. Carmack and D. W. R. Wallace (1993): Tritium and radiocarbon dating of Canadian Basin deep waters. Science, 259, 103-104.Google Scholar
  48. Manabe, S. and R. J. Stouffer (1988): Two stable equilibria of a coupled ocean-atmosphere model. J. Climate, 1, 841-866.Google Scholar
  49. Maslanik, J. A., M. C. Serreze and G. Flato (1991): Simulation of sea ice condition during the “Great Salinity Anomaly”: 1965–1875. Fall Meeting Abstr., Eos Transact. Am. Geophys. Union, p. 512.Google Scholar
  50. Maykut, G. A. (1977): Estimates of the regional heat and mass balance of the ice cover. p. 65-74. In A Symposium on Sea Ice Processes and Models, September 6–9, 1977, Vol. I, University of Washington, Seattle.Google Scholar
  51. Midttun, L. (1985): Formation of dense bottom water in the Barents Sea. Deep Sea Res., Part A, 32, 1233-1241.Google Scholar
  52. Mosby, H. (1962): Water, salt and heat balance of the North Polar Sea and the Norwegian Sea. Geophys. Norv., 24(11), 289-313.Google Scholar
  53. Nakamura, N. and A. H. Oort (1988): Atmospheric heat budgets of the Polar regions. J. Geophys. Res., 93, 9510-9524.Google Scholar
  54. Nansen, F. (1906): Northern waters: Captain Roald Amundsen's oceanographic observations in the Arctic seas in 1901. Skr. Nor Vidensk Selsk., Mat. Naturvidensk., 1, 145 pp.Google Scholar
  55. Nazarenko, L., G. Holloway and N. Tausnev (1998): Dynamics of transport of ‘Atlantic signature’ in the Arctic Ocean. J. Geophys. Res., 103, 31,003-31,015.Google Scholar
  56. Oberhuber, J. M., D. M. Holland and L. A. Mysak (1993): A thermodynamic-dynamic snow sea-ice model. p. 653-673. In Ice in the Climate System, Global Environmental Change, ed. by W. R. Peltier, NATO ASI Ser., Ser. 1.Google Scholar
  57. Pacanowski, R. C. (1995): MOM2 user's guide and reference manual, GFDL Ocean Group Tech. Rep., 3, GFDL/NOAA, Princeton, NJ, 232 pp.Google Scholar
  58. Parkinson, C. L. and W. M. Washington (1979): A large scale numerical model of sea ice. J. Geophys. Res., 84, 311-337.Google Scholar
  59. Roach, A. T., K. Aagaard, C. H. Pease, S. A. Salo, T. Weingartner, V. Pavlov and M. Kulakov (1995): Direct measurements of transport and water properties through the Bering Strait. J. Geophys. Res., 100, 18,443-18,457.Google Scholar
  60. Rudels, B. (1987): On the mass balance of the Polar Ocean with special emphasis on the Fram Strait. Skr. Nor. Polarinst., 188, 1-53.Google Scholar
  61. Rudels, B., E. P. Jones, L. G. Anderson and G. Kattner (1994): On the intermediate depth of the Arctic Ocean. p. 33-46. In The Polar Oceans and Their Role in Shaping the Global Environment, ed. by O. M. Johannessen, R. D. Muench and J. E. Overland, Geophys. Monogr. Ser., Vol. 85, AGU, Washington, D.C.Google Scholar
  62. Schlosser, P., G. Bonisch, B. Kromer, H. H. Loosli, B. Buhler, R. Bayer, G. Bonani and K. P. Koltermann (1995): Mid-1980s distribution of tritium, 3He, 14C and 39Ar in the Greenland/Norwegian Seas and the Nansen Basin of the Arctic Ocean. Prog. Oceanogr., 35, 1-28.Google Scholar
  63. Shine, K. P. (1984): Parameterization of shortwave flux over high albedo surfaces as a function of cloud thickness and surface albedo. Q. J. R. Meteorol. Soc., 110, 747-764.Google Scholar
  64. Simonsen, K. and P. M. Haugan (1996): Heat budgets of the Arctic Mediterranean and sea surface heat flux parameterization for the Nordic Seas. J. Geophys. Res., 101, 6553-6576.Google Scholar
  65. Steele, M., D. Thomas, D. Rothrock and S. Matin (1996): A simple model study of the Arctic Ocean freshwater balance, 1979–1985. J. Geophys. Res., 101, 20,833-20,848.Google Scholar
  66. Swift, J., H. Takahashi and H. D. Livingston (1983): The contribution of the Greenland Basin and Barents Sea to the deep water of the Arctic Ocean. J. Geophys. Res., 88, 5981-5986.Google Scholar
  67. Thomas, D., S. Martin, D. Rothrock and M. Steele (1996): Assimilating satellite concentration data into an Arctic sea ice mass balance model, 1979–1985. J. Geophys. Res., 101, 20,849-20,868.Google Scholar
  68. Vinje, T. (1998): Fram Strait Ice Fluxes and Environmental Effects. ACSYS Arctic Forecast, 3, 5-6.Google Scholar
  69. Vowinkel, E. and S. Orvig (1970): The climate of the North Pole basin. p. 129-252. In World Survey of Climatology, Vol. 14, Climates of the Polar Regions, ed. by S. Orvig, Elsevier, New York.Google Scholar
  70. Vuglinsky, V. S. (1997): River inflow to the Arctic Ocean: conditions of formation, time variability and forecasts. p. 275-276. In Polar Processes and Global Climate, ACSYS, Orcas Island, Washington, D.C.Google Scholar
  71. Walsh, J. E. and W. L. Chapman (1990): Arctic contribution to upper ocean variability in the North Atlantic. J. Climate, 3, 1462-1473.Google Scholar
  72. Walsh, J. E., X. Zhou, D. Portis and M. C. Serreze (1994): Atmospheric contribution to hydrologic variations in the Arctic. Atmos.-Ocean, 32, 733-755.Google Scholar
  73. Weatherly, J. W. and J. E. Walsh (1996): The effects of precipitation and river runoff in a coupled ice-ocean model of the Arctic. Clim. Dyn., 12, 785-798.Google Scholar
  74. Worthington, L. V. (1970): The Norwegian Sea as a mediterranean basin. Deep Sea Res., 17, 77-84.Google Scholar
  75. Zhang, J., W. D. Hibler, III, M. Steele and D. A. Rothrock (1998): Arctic ice-ocean modeling with and without climate restoring. J. Phys. Oceanogr., 28, 191-217.Google Scholar

Copyright information

© The Oceanographic Society of Japan 2001

Authors and Affiliations

  • Xiangdong Zhang
    • 1
    • 2
  • Jing Zhang
    • 3
  1. 1.Frontier Research System for Global Change, International Arctic Research CenterUniversity of Alaska FairbanksFairbanksU.S.A.
  2. 2.Chinese Academy of Meteorological SciencesBeijingP.R. China
  3. 3.Geophysical InstituteUniversity of Alaska FairbanksFairbanksU.S.A

Personalised recommendations