Skip to main content
Log in

Substructure and whole molecule approaches for calculating log P

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Lipophilicity is a major determinant of pharmacokinetic and pharmacodynamic properties of drug molecules. Correspondingly, there is great interest in medicinal chemistry in developing methods of deriving the quantitative descriptor of lipophilicity, the partition coefficient P, from molecular structure. Roughly, methods for calculating log P can be divided into two major classes:

Substructure approaches have in common that molecules are cut into atoms (atom contribution methods) or groups (fragmental methods); summing the single-atom or fragmental contributions (supplemented by applying correction rules in the latter case) results in the final log P.

Whole molecule approaches inspect the entire molecule; they use for instance molecular lipophilicity potentials (MLP), topological indices or molecular properties to quantify log P.

In this review, representative members of substructure and whole molecule approaches for calculating log P are described; their advantages and shortcomings are discussed. Finally, the predictive power of some calculation methods is compared and a scheme for classifying calculation methods is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sangster, J., Octanol-Water Partition Coefficients: Fundamentals and Physical Chemistry. Wiley Series in Solution Chemistry, Vol. 2, Wiley, New York, NY, 1997.

    Google Scholar 

  2. Pliska, V., Testa, B. and van de Waterbeemd, H. (Eds.) Lipophilicity in Drug Action and Toxicology. Methods and Principles in Medicinal Chemistry, Vol. 4, VCH Publishers, Weinheim, 1996.

    Google Scholar 

  3. Carrupt, P.-A., Testa, B. and Gaillard, P., in Lipkowitz, K.B. and Boyd, D.B. (Eds), Reviews in Computational Chemistry, Vol. 11, Wiley-VCH, 1997, pp. 241-315.

  4. Fujita, T., Iwasa, J. and Hansch, C., J. Am. Chem. Soc., 86 (1964) 5175-5180.

    Google Scholar 

  5. Nys, G.G. and Rekker, R.F., Chim. Ther., 8 (1973) 521-535.

    Google Scholar 

  6. Nys, G.G. and Rekker, R.F., Chim. Ther., 9 (1974) 361-375.

    Google Scholar 

  7. Rekker, R.F., A means of characterizing membrane systems. Pharmacochem. Library Vol. 1, Elsevier, Amsterdam, 1977.

    Google Scholar 

  8. Rekker, R.F. and de Kort, H.M., Eur. J. Med. Chem., 14 (1979) 479-488.

    Google Scholar 

  9. Broto, P., Moreau, G. and Vandycke, C., Eur. J. Med. Chem., 19 (1984) 71-78.

    Google Scholar 

  10. Dearden, J.C., Environ. Health Perspect., 61 (1985) 203-228.

    Google Scholar 

  11. van de Waterbeemd, H. and Testa, B., Adv. Drug Res., 16 (1987) 85-225.

    Google Scholar 

  12. Buchwald, P. and Bodor, N., Curr. Med. Chem., 5 (1998) 353-380.

    Google Scholar 

  13. Testa, B. and Seiler, P., Arzneim. Forsch., 31 (1981) 1053-1058.

    Google Scholar 

  14. Raevsky, O.A., Schaper, K.J. and Seydel, J.K., Quant. Struct.-Act. Relat., 14 (1995) 433-436.

    Google Scholar 

  15. Raevsky, O.A., Schaper, K.J., van de Waterbeemd, H. and McFarland, J.W., 12th Eur. Symp. on Structure-Activity Relationships (1999) O22.

  16. Kamlet, M.J., Abboud, J.L. and Taft, R.W., J. Am. Chem. Soc., 99 (1977) 6027-6038.

    Google Scholar 

  17. Taft, R.W., Abboud, J.-L.M., Kamlet, M.J. and Abraham, M.H., J. Sol. Chem., 14 (1985) 153-186.

    Google Scholar 

  18. Kamlet, M.J., Doherty, R.M., Carr, P., Abraham, M.H., Marcus, Y. and Taft, R.W., J. Phys. Chem., 92 (1988) 5244-5255.

    Google Scholar 

  19. Leahy, D.E., J. Pharm. Sci., 75 (1986) 629-636.

    Google Scholar 

  20. Leahy, D.E., Morris, J.J., Taylor, P.J., and Wait, A.R., J. Chem. Soc. Perkins Trans., 2 (1992) 723-731.

    Google Scholar 

  21. Meyer, P. and Maurer, G., Ind. Eng. Chem. Res., 34 (1995) 373-381.

    Google Scholar 

  22. Abraham, M.H. and Chadha, A.S., In Pliska, V., Testa, B. and van de Waterbeemd, H. (Eds), Lipophilicity in Drug Action and Toxicology, Methods and Principles in Medicinal Chemistry, Vol. 4, VCH Weinheim, 1996, pp. 311-337.

  23. El Tayar, N., Testa, B. and Carrupt. P.A., J. Phys. Chem., 96 (1992) 1455-1459.

    Google Scholar 

  24. Masuda, T., Jikihara, T., Nakamura, K., Kimura, A., Takagi, T. and Fujiwara, H., J. Pharm. Sci., 86 (1997) 57-63.

    Google Scholar 

  25. Richards, N.G.J., Williams, P.B. and Tute, M.S., Int. J. Quant. Chem: Quant. Biol. Symp., 18 (1991) 299-316.

    Google Scholar 

  26. Richards, N.G.J., Williams, P.B. and Tute, M.S., Int. J. Quant. Chem., 44 (1992) 219-233.

    Google Scholar 

  27. Leo, A.J., Jow, P.Y.C., Silipo, C. and Hansch, C., J. Med. Chem., 18 (1975) 865-868.

    Google Scholar 

  28. Hansch, C. and Leo, A.J., Substituent Constants for Correlation Analysis in Chemistry and Biology. Wiley, New York, NY, 1979.

    Google Scholar 

  29. Leo, A.J., J. Pharm. Sci., 76 (1987) 166-168.

    Google Scholar 

  30. Leo, A.J., Methods Enzym., 202 (1991) 544-591.

    Google Scholar 

  31. Leo, A.J., Chem. Rev., 93 (1993) 1281-1306.

    Google Scholar 

  32. Chou, J.T. and Jurs, P.C., J. Chem. Inf. Comput. Sci., 19 (1979) 172-178.

    Google Scholar 

  33. Leo, A.J. and Hoekman, D., Perspect. Drug Discov. Des., 18 (2000) 19-38.

    Google Scholar 

  34. Rekker, R.F. and Mannhold, R., The Hydrophobic Fragmental Constant Approach. VCH, Weinheim, 1992.

    Google Scholar 

  35. Mannhold, R., Rekker, R.F., Dross, K., Bijloo, G., de Vries, G., Quant. Struct.-Act. Relat., 17 (1998) 517-536.

    Google Scholar 

  36. Darvas, F., Erdoz, I. and Teglas, G., in Hadzi, E. and Jerman-Blazic, B. (Eds.), QSAR in Drug Design and Toxicology, Elsevier, Amsterdam, 1987, pp. 70-73.

    Google Scholar 

  37. Petelin, D.E., Arslanov, N.A., Palyulin, V.A. and Zefirov, N.S., Proceedings of the10th European Symposium on Structure-Activity Relationships, Prous Sience Publishers, Barcelona, Spain, 1995, abstract B263.

    Google Scholar 

  38. Klopman, G., Li, J.W., Wang, S. and Dimayuga, M., J. Chem. Inf. Comput. Sci., 34 (1994) 752-781.

    Google Scholar 

  39. Meylan, W.M. and Howard, P.H., J. Pharm. Sci., 84 (1995) 83-92.

    Google Scholar 

  40. Petrauskas, A.A. and Kolovanov, E.A., Perspect. Drug Discov. Design, 19 (2000) 99-116.

    Google Scholar 

  41. Petrauskas, A.A. and Kolovanov, E.A., ACD Approaches For PHYS-Chem Data Prediction. 13th Eur. Symp. Quant. Struct.-Act. Relat., abstr. book P.4, Düsseldorf (2000).

  42. Suzuki, T. and Kudo, Y., J. Comput. Aided Mol. Des., 4 (1990) 155-198.

    Google Scholar 

  43. Viswanadhan, V.N., Ghose, A.K. and Wendoloski, J.J., Perspect. Drug Discov. Des., 19 (2000) 85-98.

    Google Scholar 

  44. Ghose, A.K. and Crippen, G.M., J. Comp. Chem., 7 (1986) 565-577.

    Google Scholar 

  45. Ghose, A.K. and Crippen, G.M., J. Chem. Inf. Comp. Sci., 27 (1987) 21-35.

    Google Scholar 

  46. Ghose, A.K., Pritchett, A. and Crippen, G.M., J. Comp. Chem. 9 (1988) 80-90.

    Google Scholar 

  47. Viswanadhan, V.N., Ghose, A.K., Revankar, G.R. and Robins, R.K., J. Chem. Inf. Comput. Sci., 29 (1989) 163-172.

    Google Scholar 

  48. Ghose, A.K., Viswanadhan, V.N. and Wendoloski, J.J., J. Phys. Chem., A102 (1998) 3762-3772.

    Google Scholar 

  49. Wildman, S.A. and Crippen, G.M., J. Chem. Inf. Comput. Sci., 39 (1999) 868-873.

    Google Scholar 

  50. Convard, T., Dubost, J.P., Le Solleu, H. and Kummer, E., Quant. Struct.-Act. Relat., 13 (1994) 34-37.

    Google Scholar 

  51. Wang, R., Fu, Y. and Lai, L., J. Chem. Inf. Comp. Sci., 39 (1999) 868-873.

    Google Scholar 

  52. Wang, R., Gao, Y. and Lai, L., Perspect. Drug Discov. Des., 19 (2000) 47-66.

    Google Scholar 

  53. Audry, E., Dubost, J.-P., Colleter, J.-C. and Dallet, P., Eur. J. Med. Chem., 21 (1986) 71-72.

    Google Scholar 

  54. Fauchère, J.-L., Quarendon, P. and Kaetterer, L., J. Mol. Graphics, 6 (1988) 203-206.

    Google Scholar 

  55. Furet, P., Sele, A. and Cohen, N.C., J. Mol. Graphics, 6 (1988) 182-189.

    Google Scholar 

  56. Gaillard, P., Carrupt, P.-A., Testa, B. and Boudon, A., J. Comput.-Aided Mol. Design, 8 (1994) 83-96.

    Google Scholar 

  57. Kellogg, G.E., Semus, S.F. and Abraham, D.J., J. Comput. Aided Mol. Des., 5 (1991) 545-552.

    Google Scholar 

  58. Kellogg, G.E., Joshi, G.J. and Abraham, D.J., Med. Chem. Res., 1 (1992) 444-453.

    Google Scholar 

  59. Abraham, D.J. and Kellogg, G.E., J. Comput. Aided Mol. Des., 8 (1994) 41-49.

    Google Scholar 

  60. Kellogg, G. E. and Abraham, D. J., Analysis, 2 (1999) 19-23.

    Google Scholar 

  61. Kellogg, G. E. and Abraham, D. J., Eur. J. Med. Chem., 35 (2000) 651-661.

    Google Scholar 

  62. Heiden, W., Moeckel, G. and Brickmann, J., A new approach to analysis and display of local lipophi-licity/hydrophilicity mapped on molecular surfaces. J. Comput. Aided Mol. Des., 7 (1993) 503-514.

    Google Scholar 

  63. Pixner, P., Heiden, W., Merx, H., Moeckel, G., Möller, A. and Brickmann, J., J. Chem. Inf. Comput. Sci., 34 (1994) 1309-1319.

    Google Scholar 

  64. Brickmann, J. and Jäger, R., Analysis, 2 (1999) 15-18.

    Google Scholar 

  65. Ghuloum, A.M., Sage, C.R. and Jain, A.N., J. Med. Chem., 42 (1999) 1739-1748.

    Google Scholar 

  66. Niemi, G.J., Basak, S.C., Veith, G.D. and Grunwald, G., Environ. Tox. Chem., 11 (1992) 893-900.

    Google Scholar 

  67. Moriguchi, I., Hirono, S., Liu, Q., Nakagome, I. Matsushita, Y., Chem. Pharm. Bull., 40 (1992) 127-130.

    Google Scholar 

  68. Gombar, V.K. and Enslein, K., J. Chem. Inf. Comput. Sci., 36 (1996) 1127-1134.

    Google Scholar 

  69. Gombar, V.K., SAR QSAR Environ. Res., 10 (1999) 371-380.

    Google Scholar 

  70. Junghans, M. and Pretsch, E., Fresenius J. Anal. Chem., 359 (1997) 88-92.

    Google Scholar 

  71. Bodor, N. and Huang, M.J., J. Pharm. Sci., 81 (1992) 272-281.

    Google Scholar 

  72. Schaper, K.-J. and Samitier, M.L.R., Quant. Struct.-Act. Relat., 16 (1997) 224-230.

    Google Scholar 

  73. Devillers, J., Domine, D., Guillon, C. and Karcher, W., J. Pharm. Sci., 87 (1998) 1086-1090.

    Google Scholar 

  74. Huuskonen, J.J., Villa, A.E. P. and Tetko, I.V., J. Pharm. Sci., 88 (1999) 229-233.

    Google Scholar 

  75. Huuskonen, J.J., Livingstone, D.J. and Tetko, I.V., J. Chem. Inf. Comput. Sci., 40 (2000) 947-955.

    Google Scholar 

  76. Rogers, K.S. and Cammarata, A., J. Med. Chem., 12 (1969) 692-693.

    Google Scholar 

  77. Hopfinger, A.J. and Battershell, R.D., J. Med. Chem., 19 (1976) 569-573.

    Google Scholar 

  78. Klopman, G. and Iroff, L.D., J. Comp. Chem., 2 (1981) 157-160.

    Google Scholar 

  79. Bodor, N., Gabanyi, Z. and Wong, C.K., J. Am. Chem. Soc., 111 (1989) 3783-3786.

    Google Scholar 

  80. Haeberlein, M. and Brinck, T., J. Chem. Soc., Perkin Trans., 2 (1997) 289-294.

    Google Scholar 

  81. Makino, M., Chemosphere, 37 (1998) 13-26.

    Google Scholar 

  82. Sasaki, Y., Kubodera, H., Matuszaki, T. and Umeyama, H., J. Pharmacobio-Dyn., 14 (1991) 207-214.

    Google Scholar 

  83. Bodor, N. and Buchwald, P., J. Phys. Chem., B101 (1997) 3404-3412.

    Google Scholar 

  84. Ulmschneider, M., Analytical Model for the Calculation of van der Waals and Solvent Accessible Surface Areas. Contribution to the Calculation of Free Enthalpies of Hydration and Octanol/Water Partition Coefficients. Ph.D. Thesis, University of Haute-Alsace, Mulhouse/France (1993).

    Google Scholar 

  85. van deWaterbeemd, H., Karajiannis, H., Kansy, M., Obrecht, D., Müller, K. and Lehmann, Ch., in Sanz, F., Giraldo, J., Manaut, F. (Eds.), QSAR and Molecular Modelling: Concepts, Computational Tools and Biological Applications. Prous, Barcelona; 1995, pp 78-90.

    Google Scholar 

  86. Richards, N.G.J. and Williams. P.B., Chem. Design Automat. News, 9 (1994) 21-26.

    Google Scholar 

  87. Bravi, G., Gancia, E., Mascagni, P., Pegna, M., Todeschini, R. and Zaliani, A., J. Comput. Aided Mol. Des., 11 (1997) 79-92.

    Google Scholar 

  88. Bravi, G. and Wikel, J.H., Quant.-Struct. Act.-Relat., 19 (2000) 39-49.

    Google Scholar 

  89. Cruciani, G., Clementi, S., Fravolini, A., Cecchetti, V., Tabarrini, O. and Filipponi, E., XIII. Meeting of the Italian Pharm. Chemistry Society, Paestum, Italy, 1996, abstr. book P 126.

    Google Scholar 

  90. Kim, K.H., J. Comp.-Aid. Design, 9 (1995) 308-318.

    Google Scholar 

  91. Waller, C.L., Quant. Struct.-Act. Relat., 13 (1994) 172-176.

    Google Scholar 

  92. Bodor, N., Huang, M.-J. and Harget, A., J. Mol. Struct. (Theochem), 309 (1994) 259-266.

    Google Scholar 

  93. Grunenberg, J. and Herges, R., J. Chem. Inf. Comput. Sci., 35 (1995) 905-911.

    Google Scholar 

  94. Duprat, A.F., Huynh, T. and Dreyfus, G., J. Chem. Inf. Comput. Sci., 38 (1998) 586-594.

    Google Scholar 

  95. Breindl, A., Beck, B., Clark, T. and Glen, R.C., J. Mol. Model., 3 (1997) 142-155.

    Google Scholar 

  96. Hansch, C., Leo, A. and Hoekman, D. (Eds.), Exploring QSAR; hydrophobic, electronic and steric constants. ACS Professional Reference Book, 1995.

  97. Kühne, R., Rothenbacher, C., Herth, P. and Schüürmann, G., in Jochum, C. (Ed.), Software Development in Chemistry, Vol. 8, GDCh, Frankfurt, 1994, pp. 207-224.

    Google Scholar 

  98. Schüürmann, G., Kühne, R., Ebert, R.-U. and Kleint, F., Fresenius Environ. Bull., 4 (1995) 13-18.

    Google Scholar 

  99. Mannhold, R., Dross, K. and Rekker, R.F., Quant. Struct.-Act. Relat., 9 (1990) 21-28.

    Google Scholar 

  100. Rekker, R.F., Mannhold, R. and ter Laak, A.M., Quant. Struct.-Act. Relat., 12 (1993) 152-157.

    Google Scholar 

  101. Mannhold, R., Rekker, R.F., Sonntag, C., ter Laak, A.M., Dross, K. and Polymeropoulos, E.E., J. Pharm. Sci., 84 (1995) 1410-1419.

    Google Scholar 

  102. Moriguchi, I., Hirono, S., Nakagome, I. and Hirano, H., Chem. Pharm. Bull., 42 (1994) 976-978.

    Google Scholar 

  103. Viswanadhan, V.N., Reddy, M.R., Bacquet, R.J. and Erion M.D., J. Comp. Chem., 14 (1993) 1019-1026.

    Google Scholar 

  104. Devillers, J., Perspect. Drug Discov. Des., 19 (2000) 117-113.

    Google Scholar 

  105. Petrauskas, A.A. and Kolovanov, E.A., 13th Eur. Symp. Quant. Struct.-Act. Relat., abstr. book P.84, Düsseldorf (2000).

  106. Mannhold, R. and Dross K., Quant. Struct.-Act. Relat., 15 (1996) 403-409.

    Google Scholar 

  107. van de Waterbeemd, H. and Mannhold, R., in Pliska, V., Testa, B. and van de Waterbeemd, H. (Eds.), Lipophilicity in Drug Action and Toxicology. Methods and Principles in Medicinal Chemistry, Vol. 4, VCH Publishers, Weinheim, 1996, pp. 401-418.

    Google Scholar 

  108. Mannhold, R., Cruciani, G., Dross, K. and Rekker, R.F., Comput. Aided Mol. Des., 12 (1998) 573-581.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mannhold, R., van de Waterbeemd, H. Substructure and whole molecule approaches for calculating log P. J Comput Aided Mol Des 15, 337–354 (2001). https://doi.org/10.1023/A:1011107422318

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011107422318

Navigation