Skip to main content
Log in

A Caloric-based Evaluation of Diet Indices for Largemouth Bass

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Selection of methods for quantitative description and assessment of food habits is a concern for trophic investigations. We used diet data for largemouth bass Micropterus salmoides, to compare a caloric-based approach with eight diet indices: percent frequency of occurrence, percent total number, percent total weight, mean relative number, mean relative volume, relative importance index, prey-importance index, and mean stomach fullness. Mean caloric contribution of stomach contents for each prey taxon was used as a standard to compare diet indices. Temporal differences in composition and caloric contents of largemouth bass stomach contents were apparent. Most diet indices provided similar assessments when diets were dominated by a single prey type (i.e., gizzard shad during June-October). However, diet indices evaluated provided dissimilar assessments of stomach contents when a variety of prey with differing caloric densities were consumed (e.g., April). Mean stomach fullness and percent by volume were significantly (p < 0.002) correlated (r = 0.94 − 1.00) with mean caloric contribution of largemouth bass stomach contents during all months. Unlike percent by weight, mean stomach fullness accounted for differences in fish size and stomach capacity. Thus, mean stomach fullness by prey type appears to be the most appropriate index when objectives include simplified caloric-based assessments of fish diets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, S. M. & J. E. Breck. 1990. Bioenergetics. pp. 389–415. In: C.B. Schreck & P.B. Moyle (ed.), Methods for Fish Biology, American Fisheries Society, Bethesda.

    Google Scholar 

  • Adams, S. M., R. B. McLean & M. M. Huffman. 1982a. Structuring of a predator population through temperature-mediated effects on prey availability. Can. J. Fish. Aquat. Sci. 39: 1175–1184.

    Google Scholar 

  • Adams, S. M., R. B. McLean & J. A. Parrotta. 1982b. Energy partitioning in largemouth bass under conditions of seasonally fluctuating prey availability. Trans. Amer. Fish. Soc. 111: 549–558.

    Google Scholar 

  • Allen, J. R. M. & R. J. Wootton. 1982. The effect of ration and temperature on the growth of the three-spined stickleback, Gasterosteus aculeatus L. J. Fish Biol. 20: 409–422.

    Google Scholar 

  • Anderson, R. O. & R. M. Neumann. 1996. Length, weight, and associated structural indices. pp. 447–482. In: B. R. Murphy & D.W. Willis (ed.), Fisheries Techniques, 2nd edition, American Fisheries Society, Bethesda.

    Google Scholar 

  • Bennett, D. H. & J. W. Gibbons. 1972. Food of largemouth bass (Micropterus salmoides) from a South Carolina reservoir receiving heated effluent. Trans. Amer. Fish. Soc. 101: 650–654.

    Google Scholar 

  • Berg, J. 1979. Discussion of methods of investigating the food of fishes, with reference to a preliminary study of the prey of Gobiusculus flavescens (Gobiidae). Marine Biology 50: 263–273.

    Google Scholar 

  • Bowen, S. H. 1996. Quantitative description of the diet. pp. 513–532. In: B. R. Murphy & D. W. Willis (ed.), Fisheries Techniques, 2nd edition, American Fisheries Society, Bethesda.

    Google Scholar 

  • Bowen, S. H., E. V. Lutz & M. O. Ahlgren. 1995. Dietary protein and energy as determinants of food quality: trophic strategies compared. Ecology 76: 899–907.

    Google Scholar 

  • Brett, J. R. & T. D. D. Groves. 1979. Physiological energetics. pp. 279–352. In: W. S. Hoar, D. J. Randall & J. R. Brett (ed.), Fish Physiology, volume 8, Academic Press, New York.

    Google Scholar 

  • Bryan, S. D., T. D. Hill, S. T. Lynott & W. G. Duffy. 1995. The influence of changingwater levels and temperatures on the food habits of walleye in Lake Oahe, South Dakota. J. Freshwater Ecol. 10: 1–10.

    Google Scholar 

  • Bryan, S. D., C. A. Soupir, W. G. Duffy & C. E. Freiburger. 1996. Caloric densities of three predatory fishes and their prey in Lake Oahe, South Dakota. J. Freshwater Ecol. 11: 153–161.

    Google Scholar 

  • Cailteux, R. L., W. F. Porak & S. Crawford. 1990. Reevaluating the use of acrylic tubes for collection of largemouth bass stomach contents. Proc. Annu. Conf. Southeast. Assoc. Fish and Wildl. Agencies 44: 126–132.

    Google Scholar 

  • Cochran, P. A. & I. R. Adelman. 1982. Seasonal aspects of daily ration and diet of largemouth bass, Micropterus salmoides, with an evaluation of gastric evacuation rates. Env. Biol. Fish. 7: 265–275.

    Google Scholar 

  • Cummins, K.W. & J. C. Wuycheck. 1971. Caloric equivalents for investigations in ecological energetics. Mitt. int. Ver. Limnol. 18: 1–158.

    Google Scholar 

  • Gannon, J. E. 1976. The effects of differential digestion rates of zooplankton by alewife, Alosa pseudoharengus, on determinations of selective feeding. Trans. Amer. Fish. Soc. 105: 89–95.

    Google Scholar 

  • George, E. L. & W. F. Hadley. 1979. Food and habitat partitioning between rock bass (Ambloplites rupestris) and smallmouth bass (Micropterus dolomieui) young of the year. Trans. Amer. Fish. Soc. 108: 253–261.

    Google Scholar 

  • Healey, M. C. 1972. Bioenergetics of the sand goby (Gobius minutus) population. J. Fish. Res. Board Can. 29: 187–194.

    Google Scholar 

  • Hellawell, J. M. 1971. The autoecology of chub, Squalis sephalus (L.) of the River Lugg and Afon Llynfi. III. Diet and feeding habits. Freshwater Biology 1: 369–387.

    Google Scholar 

  • Hellawell, J. M. 1972. The growth, reproduction and food of the roach, Rutilus rutilus (L.) of the River Lugg, Herefordshire. J. Fish Biol. 4: 469–486.

    Google Scholar 

  • Hodgson, J. R. & J. F. Kitchell. 1987. Opportunistic foraging by largemouth bass (Micropterus salmoides). Amer. Mid. Nat. 118: 323–336.

    Google Scholar 

  • Hyslop, E. J. 1980. Stomach contents analysis- a review of methods and their application. J. Fish Biol. 17: 411–429.

    Google Scholar 

  • Jackson, J. J., D. W. Willis & D. G. Fielder. 1992. Food habits of young-of-the-year walleyes in Okobojo Bay of Lake Oahe, South Dakota. J. Freshwater Ecol. 7: 329–341.

    Google Scholar 

  • Kelso, J. R. M. 1973. Seasonal energy changes in walleye and their diet in West Blue Lake, Manitoba. Trans. Amer. Fish. Soc. 102: 363–368.

    Google Scholar 

  • Kerr, S. R. 1971. Prediction of fish growth efficiency in nature. J. Fish. Res. Board Can. 28: 809–814.

    Google Scholar 

  • Kimball, D. C. & W. T. Helm. 1971. A method of estimating fish stomach capacity. Trans. Amer. Fish. Soc. 100: 572–575.

    Google Scholar 

  • Kitchell, J. F. & J. E. Breck. 1980. Bioenergetics model and foraging hypothesis for sea lamprey (Petromyzon marinus). Can. J. Fish. Aquat. Sci. 37: 2159–2168.

    Google Scholar 

  • Knight, R. L. & F. J. Margraf. 1982. Estimating stomach fullness in fishes. North Amer. J. Fish. Manage. 2: 413–414.

    Google Scholar 

  • Lampert, W. & U. Sommer. 1997. Limnoecology: the ecology of lakes and streams. Oxford University Press, New York. 382 pp.

    Google Scholar 

  • Magnuson, J. J. 1969. Digestion and food consumption by skipjack tuna (Katsuwonus pelamis). Trans. Amer. Fish. Soc. 98: 379–392.

    Google Scholar 

  • Markus, H. C. 1932. The extent to which temperature changes influence food consumption in largemouth bass (Huro floridana). Trans. Amer. Fish. Soc. 62: 202–210.

    Google Scholar 

  • Michaletz, P. H. 1997. Influence of abundance and size of age-0 gizzard shad on predator diets, diet overlap, and growth. Trans. Amer. Fish. Soc. 126: 101–111.

    Google Scholar 

  • Miller, R. G., Jr. 1981. Simultaneous statistical inference, 2nd edition. Springer-Verlag, New York. 299 pp.

    Google Scholar 

  • Miranda, L. E. & R. J. Muncy. 1989. Bioenergetic values of shads and sunfishes as prey for largemouth bass. Proc. Annu. Conf. Southeast Assoc. Fish Wildl. Agencies 43: 153–163.

    Google Scholar 

  • Paloheimo, J. E. & L. M. Dickie. 1966. Food and growth of fishes. III. Relationships among food, body size, and growth efficiency. J. Fish. Res. Board Can. 23: 1209–1248.

    Google Scholar 

  • Perry, W. B., W. A. Janowsky & F. J. Margraf. 1995. A bioenergetics simulation of the potential effects of angler harvest on growth of largemouth bass in a catch-and-release fishery. North Amer. J. Fish. Manage. 15: 705–712.

    Google Scholar 

  • Pinkas, L., M. S. Oliphant & I. L. K. Iverson. 1971. Food habits of albacore, bluefin tuna and bonito in California waters. California Fish and Game 152: 1–105.

    Google Scholar 

  • Probst, W. E., C. F. Rabeni, W. G. Covington & R. E. Marteney. 1984. Resource use by stream-dwelling rock bass and smallmouth bass. Trans. Amer. Fish. Soc. 113: 283–294.

    Google Scholar 

  • Rice, W. R. 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.

    Google Scholar 

  • Rice, J. A. & P. A. Cochran. 1984. Independent evaluation of a bioenergetics model for largemouth bas. Ecology 65: 732–739.

    Google Scholar 

  • Seaburg, K. G. & J. B. Moyle. 1964. Feeding habits, digestive rates, and growth of some Minnesota warmwater fishes. Trans. Amer. Fish. Soc. 93: 269–285.

    Google Scholar 

  • Smagula, C. M. & I. R. Adelman. 1982. Day-to-day variation in food consumption by largemouth bass. Trans. Amer. Fish. Soc. 111: 543–548.

    Google Scholar 

  • Stewart, D. J., J. F. Kitchell & L. B. Crowder. 1981. Forage fishes and their salmonid predators in Lake Michigan. Trans. Amer. Fish. Soc. 110: 751–763.

    Google Scholar 

  • Stewart, D. J., D. Weininger, D. V. Rottiers & T. A. Edsall. 1983. An energetics model for lake trout, Salvelinus namaycush: application to the Lake Michigan population. Can. J. Fish. Aquat. Sci. 40: 681–698.

    Google Scholar 

  • Strange, R. J. & J. C. Pelton. 1987. Nutrient content of clupeid forage fishes. Trans. Amer. Fish. Soc. 116: 60–66.

    Google Scholar 

  • Swedberg, D. V. & C. H. Walburg. 1970. Spawning and early life history of the freshwater drum in Lewis and Clark Lake, Missouri River. Trans. Amer. Fish. Soc. 99: 560–570.

    Google Scholar 

  • Van Den Avyle, M. J. & J. E. Roussel. 1980. Evaluation of a simple method for removing food items from live black bass. The Progressive Fish-Culturist 42: 222–223.

    Google Scholar 

  • Wallace, R. K., Jr. 1981. An assessment of diet-overlap indexes. Trans. Amer. Fish. Soc. 110: 72–76.

    Google Scholar 

  • Ware, D. M. 1975. Growth, metabolism, and optimal swimming speed of a pelagic fish. J. Fish. Res. Board Can. 32: 33–41.

    Google Scholar 

  • Warren, C. E. & G. E. Davis. 1967. Laboratory studies on the feeding, bioenergetics, and growth of fish. pp. 175–214. In: S. D. Gerking (ed.), The Biological Basis of Freshwater Fish Production, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Williams, W. E. 1959. Food conversion and growth rates for largemouth bass and smallmouth bass in laboratory aquaria. Trans. Amer. Fish. Soc. 88: 125–127.

    Google Scholar 

  • Windell, J. T. 1971. Food analysis and rate of digestion. pp. 215–226. In: W. E. Ricker (ed.), Methods for Assessment of Fish Production in Fresh Waters, International Biological Programme Handbook 3, Blackwell, Oxford.

    Google Scholar 

  • Wright, L. D. 1970. Forage size preference of the largemouth bass. The Progressive Fish-Culturist 32: 39–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pope, K.L., Brown, M.L., Duffy, W.G. et al. A Caloric-based Evaluation of Diet Indices for Largemouth Bass. Environmental Biology of Fishes 61, 329–339 (2001). https://doi.org/10.1023/A:1011096819147

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011096819147

Navigation