Skip to main content
Log in

On the Eigenstates of the Elliptic Calogero–Moser Model

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is known that the trigonometric Calogero–Sutherland model is obtained by the trigonometric limit (τ→√−1∞) of the elliptic Calogero–Moser model, where (1, τ) is a basic period of the elliptic function. We show that for all square-integrable eigenstates and eigenvalues of the Hamiltonian of the Calogero–Sutherland model, if exp(2π√−1τ) is small enough then there exist square-integrable eigenstates and eigenvalues of the Hamiltonian of the elliptic Calogero–Moser model which converge to the ones of the Calogero–Sutherland model for the 2-particle and the coupling constant l is positive integer cases and the 3-particle and l=1 case. In other words, we justify the regular perturbation with respect to the parameter exp(2π√−1τ). With some assumptions, we show analogous results for N-particle and l is positive integer cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Billey, E.: Algebraic nested Bethe Ansatz for the elliptic Ruijsenaars model, Preprint, math.QA/9806068 (m).

  2. Buchstaber, V.M., Felder, G. and Veselov, A. P.: Elliptic Dunkl operators, root systems, and functional equations, Duke Math. J. 76(3) (1994), 885–911.

    Google Scholar 

  3. Cherednik, I.: Elliptic quantum many-body problem and double affine Knizhnik--Zamolodchikov equation, Comm. Math. Phys. 169(2) (1995), 441–461.

    Google Scholar 

  4. Felder, G. and Varchenko, A.: Integral representation of solutions of the elliptic Knizhnik--Zamolodchikov--Bernard equations, Internat. Math. Res. Notices, No. 5, (1995), 221–233.

  5. Felder, G. and Varchenko, A.: Three formulae for eigenfunctions of integrable Schrödinger operator, Compositio Math. 107(2) (1997), 143–175.

    Google Scholar 

  6. Felder, G. and Varchenko, A.: Elliptic quantum groups and Ruijsenaars models, J. Statist. Phys. 89(5–6) (1997), 963–980.

    Google Scholar 

  7. Hasegawa, K.: Ruijsenaars' commuting difference operators as commuting transfer matrices, Comm. Math. Phys. 187(2) (1997), 289–325.

    Google Scholar 

  8. Hikami, K. and Komori, Y.: Diagonalization of the elliptic Ruijsenaars model. Correspondence with the Belavin model, Eur. Phys. J. B 5 (1998), 583–588.

    Google Scholar 

  9. Macdonald, I. G.: Symmetric Functions and Hall Polynomials, 2nd edn, The Clarendon Press, Oxford University Press, New York, 1995.

    Google Scholar 

  10. Olshanetsky, M. A. and Perelomov, A. M.: Quantum integrable systems related to Lie algebras, Phys. Rep. 94(6) (1983), 313–404.

    Google Scholar 

  11. Ruijsenaars, S. N. M.: Complete integrability of relativistic Calogero–Moser systems and elliptic function identities, Comm. Math. Phys. 110(2) (1987), 191–213.

    Google Scholar 

  12. Stanley, R.: Some combinatorial properties of Jack symmetric functions, Adv. Math. 77(1) (1989), 76–115.

    Google Scholar 

  13. Sutherland, B.: Exact results for a quantum many-body problems in one dimension, Phys. Rev. A 4(5) (1971), 2019–2021.

    Google Scholar 

  14. Varchenko, A.: Critical points of the product of powers of linear functions and families of bases of singular vectors, Compositio Math. 97(3) (1995), 385–401.

    Google Scholar 

  15. Whittaker, E. T. and Watson, G. N.: A Course ofModern Analysis, 4th edn, Cambridge University Press, New York, 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takemura, K. On the Eigenstates of the Elliptic Calogero–Moser Model. Letters in Mathematical Physics 53, 181–194 (2000). https://doi.org/10.1023/A:1011073115698

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011073115698

Navigation