Skip to main content
Log in

Influence of Drug Treatment on the Microacidity in Rat and Human Skin—An In Vitro Electron Spin Resonance Imaging Study

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The possibilities of the noninvasive examination of microacidity5 in different depths of the skin in vitro was explored, and the impact of drug treatment on the pH inside the skin was studied.

Methods. Spectral-spatial electron spin resonance imaging (ss-ESRI) and pH-sensitive nitroxides were used to obtain a pH map of rat and human skin in vitro.

Results. The dermal application of therapeutically used acids, such as salicylic acid and azelaic acid, caused a plain change of microacidity (pH) inside the skin. Species-linked differences between rat and human skin samples with respect to penetration and microacidity were found.

Conclusions. ESRI has been shown to be a new and completely noninvasive method to monitor microacidity in different skin layers and on the skin surface. This nondestructive method allows serial measurements on skin samples to be performed without any preparatory steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Thune, T. Nilsen, I. K. Hanstad, T. Gustavsen, and H. Lovig Dahl. The water barrier function of the skin in relation to the water content of stratum corneum, pH and skin lipids. The effect of alkaline soap and syndet on dry skin in elderly, nonatopic patients. Acta Derm. Venerol. 68:277-283 (1988).

    Google Scholar 

  2. S. Dikstein and A. Zlotogorski. Measurement of skin pH. Acta Derm. Venerol. Suppl. (Stockh.) 185:18-20 (1994).

    Google Scholar 

  3. L. E. Lin, M. Shporer, and M. M. Civan. 31P-nuclear magnetic resonance analysis of perfused single frog skin. Am. J. Physiol. 248:177-180 (1985).

    Google Scholar 

  4. C. J. Deutsch and J. S. Taylor. Intracellular pH as measured by 19F NMR. Ann. NY Acad. Sci. 508:33-47 (1987).

    Google Scholar 

  5. A. Madden, M. O. Leach, J. C. Sharp, D. J. Collins, and D. Easton. A quantitative analysis of in vivo pH measurements with 31P-NMR spectroscopy: Assessment of pH measurement methodology. NMR Biomed. 4:1-11 (1991).

    Google Scholar 

  6. V. V. Khramtsov, D. Marsh, L. Weiner, I. A. Grigoriev, and L. B. Volodarsky. Proton exchange in stable nitroxyl radicals. EPR study of the pH of aqueous solutions. Chem. Phys. Lett. 91:69-72 (1982).

    Google Scholar 

  7. V. V. Khramtsov, D. Marsh, L. Weiner, and V. A. Reznikov. The application of pH-sensitive spin labels to studies of surface potential and polarity of phospholipid membranes and proteins. Biochim. Biophys. Acta 1104:317-324 (1992).

    Google Scholar 

  8. C. Kroll, K. Mäder, R. Stöβer, and H.-H. Borchert. Direct and continuous determination of pH values in nontransparent w/o systems by means of ESR spectroscopy. Eur. J. Pharm. Sci. 3:21-26 (1995).

    Google Scholar 

  9. A. Brunner, K. Mäder, and A. Göpferich. The microenvironment inside biodegradable microspheres: changes in pH and osmotic pressure. Pharm. Res. 16:847-853 (1999).

    Google Scholar 

  10. I. Katzhendler, K. Mäder, and M. Friedman. Correlation between drug release kinetics from proteineous matrix and matrix structure: EPR and NMR study. J. Pharm. Sci. 89:365-381 (2000).

    Google Scholar 

  11. K. Mäder, B. Gallez, K. J. Liu, and H. M. Swartz. Noninvasive in vivo characterization of release processes in biodegradable polymers by low frequency electron paramagnetic resonance spectroscopy. Biomaterials 17:459-463 (1996).

    Google Scholar 

  12. B. Gallez, K. Mäder, and H. M. Swartz. Noninvasive measurement of the pH inside the gut by using pH-sensitive nitroxides. An in vivo EPR study. Magn. Reson. Med. 36:694-697 (1996).

    Google Scholar 

  13. M. M. Maltempo, S. S. Eaton, and G. R. Eaton. Spectra-spatial imaging. In G. R. Eaton, S. S. Eaton and K. Ohno (eds.), EPR Imaging and In Vivo EPR, CRC Press, Boca Raton, FL, 1991 pp. 135-143.

    Google Scholar 

  14. K. Mäder, S. Nitschke, R. Stöβer, H.-H. Borchert, and A. Domb. Nondestructive and localized assessment of acidic microenvironments inside biodegradable polyanhydrides by spectral spatial electron paramagnetic resonance imaging. Polymer 38:4785-4794 (1997).

    Google Scholar 

  15. H. M. Rauen. Biochemisches Taschenbuch, Springer Verlag, Berlin, 1964.

    Google Scholar 

  16. C. Kroll. Analytik, Stabilität und Biotransformation von Spinsonden sowie deren Einsatz im Rahmen pharmazeutisch-technologischer und biopharmazeutischer Untersuchungen. Dissertation, Humboldt-Universität zu Berlin, 1999.

  17. J. Fuchs, H. J. Freisleben, M. Podda, G. Zimmer, R. Milbradt, and L. Packer. Nitroxide radical biostability in skin. Free Radic. Biol. Med. 15:415-423 (1993).

    Google Scholar 

  18. M. Przerwa and M. Arnold. Studies on the penetrability of skin. Arzneimittel-Forschung 25:1048-1053 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kroll, C., Herrmann, W., Stöβer, R. et al. Influence of Drug Treatment on the Microacidity in Rat and Human Skin—An In Vitro Electron Spin Resonance Imaging Study. Pharm Res 18, 525–530 (2001). https://doi.org/10.1023/A:1011066613621

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011066613621

Navigation