Skip to main content
Log in

A Unified Approach to Poisson Reduction

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Given any Poisson action G×PP of a Poisson–Lie group G we construct an object Ω=T *G*T* P which has both a Lie groupoid structure and a Lie algebroid structure and which is a half-integrated form of the matched pair of Lie algebroids which J.-H. Lu associated to a Poisson action in her development of Drinfeld's classification of Poisson homogeneous spaces. We use Ω to give a general reduction procedure for Poisson group actions, which applies in cases where a moment map in the usual sense does not exist. The same method may be applied to actions of symplectic groupoids and, most generally, to actions of Poisson groupoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coste, A., Dazord, P. and Weinstein, A.: Groupoïdes symplectiques, Publ. Dép. Math. Univ. Lyon, I, 2/A-1987, 1–65.

    Google Scholar 

  2. Cannas da Silva, A. and Weinstein, A: GeometricModels for Noncommutative Algebras, Berkeley Math Lecture Notes 10, Amer. Math. Soc., Providence, 1999.

    Google Scholar 

  3. Drinfel'd, V. G.: On Poisson homogeneous spaces of Poisson-Lie groups, Theoret. Math. Phys. 95(2) (1993), 226–227.

    Google Scholar 

  4. Higgins, P. J. and Mackenzie, K. C. H.: Algebraic constructions in the category of Lie algebroids, J. Algebra 129 (1990), 194–230.

    Google Scholar 

  5. Huebschmann. J.: Poisson cohomology and quantization, J. Reine Angew. Math. 408 (1990), 57–113.

    Google Scholar 

  6. Karasev, M. V.: The Maslov quantization conditions in higher cohomology and analogs of notions developed in Lie theory for canonical fibre bundles of symplectic manifolds, I, II, Selecta Math. Soviet 8 (1989), 213–234, 235-258. Preprint, Moscov. Inst. Electron Mashinostroeniya, 1981, deposited at VINITI, 1982.

    Google Scholar 

  7. Karasev, M. V.: Analogues of objects of the theory of Lie groups for nonlinear Poisson brackets, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), 508–538, 638. English transl. Math. USSR-Izv. 28(3) (1987), 497-527.

    Google Scholar 

  8. Lu, Jiang-Hua: Momentum mappings and reduction of Poisson actions, In: Symplectic Geometry, Groupoids, and Integrable Systems (Berkeley, CA, 1989), Springer, New York, 1991, pp. 209–226.

    Google Scholar 

  9. Lu, Jiang-Hua: Poisson homogeneous spaces and Lie algebroids associated to Poisson actions, Duke Math. J. 86 (1997), 261–304.

    Google Scholar 

  10. Lu, Jiang-Hua and Weinstein, A.: Groupo ïdes symplectiques doubles des groupes de Lie-Poisson, C.R. Acad. Sci. Paris Sér. I Math. 309 (1989).

  11. Lu, Jiang-Hua and Weinstein, A.: Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Differential Geom. 31 (1990), 501-526.

  12. Mackenzie, K.: Lie groupoids and Lie algebroids in differential geometry, London Math. Soc. Lecture Note Ser. 124, Cambridge Univ. Press, 1987.

  13. Mackenzie, K. C. H.: Double Lie algebroids and second-order geometry, I. Adv. Math. 94(2) (1992), 180–239.

    Google Scholar 

  14. Mackenzie, K. C. H.: Lie algebroids and Lie pseudoalgebras, Bull. London Math. Soc. 27(2) (1995), 97–147.

    Google Scholar 

  15. Mackenzie, K. C. H.: Drinfel'd doubles and Ehresmann doubles for Lie algebroids and Lie bialgebroids, Electron. Res. Announc. Amer. Math. Soc. 4 (1998), 74–87.

    Google Scholar 

  16. Mackenzie, K. C. H.: Double Lie algebroids and second-order geometry, II, Adv. Math. 154 (2000), 46–75.

  17. Mackenzie, K. C. H.: Notions of double for Lie algebroids, submitted.

  18. Mackenzie, K. C. H. and Xu, Ping: Lie bialgebroids and Poisson groupoids, Duke Math. J. 73(2) (1994), 415–452.

    Google Scholar 

  19. Mackenzie, K. C. H. and Xu, Ping: Classical lifting processes and multiplicative vector fields, Quart. J. Math. Oxford (2) 49 (1998), 59–85.

    Google Scholar 

  20. Marsden, J. E. and Raţiu, T.: Reduction of Poisson manifolds, Lett. Math. Phys. 11(2) (1986), 161–169.

    Google Scholar 

  21. Mikami, K. and Weinstein, A.: Moments and reduction for symplectic groupoids, Publ. Res. Inst. Math. Sci. 24 (1988), 121–140.

    Google Scholar 

  22. Mokri, T.: Matched pairs of Lie algebroids, Glasgow Math. J. 39 (1997), 167–181.

    Google Scholar 

  23. Vaisman, I.: Lectures on the Geometry of Poisson Manifolds, Progr. Math., Birkhüuser, Basel, 1994.

  24. Weinstein, A.: The local structure of Poisson manifolds, J. Differential Geom. 18 (1983), 523–557, Errata and Addenda, J. Differential Geom. 22 (1985), 255.

    Google Scholar 

  25. Weinstein, A.: Symplectic groupoids and Poisson manifolds, Bull. Amer. Math. Soc. (N.S.), 16 (1987), 101–104.

    Google Scholar 

  26. Weinstein, A.: Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan 40 (1988), 705–727.

    Google Scholar 

  27. Weinstein, A.: Some remarks on dressing transformations, J. Fac. Sci. Univ. Tokyo. Sect. 1A, Math. 36 (1988), 163–167.

    Google Scholar 

  28. Weinstein, A.: Affine Poisson structures, Internat. J. Math. 1 (1990), 343–360.

    Google Scholar 

  29. Xu, Ping: Symplectic groupoids of reduced Poisson spaces, C.R. Acad. Sci. Paris Sèr. I Math. 314 (1992), 457–461.

    Google Scholar 

  30. Xu, Ping: On Poisson groupoids, Internat. J. Math. 6(1) (1995), 101–124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackenzie, K.C.H. A Unified Approach to Poisson Reduction. Letters in Mathematical Physics 53, 215–232 (2000). https://doi.org/10.1023/A:1011055510672

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011055510672

Navigation