Ritonavir: An Extraordinary Example of Conformational Polymorphism


Purpose. In the summer of 1998, Norvir semi-solid capsules supplies were threatened as a result of a new much less soluble crystal form of ritonavir. This report provides characterization of the two polymorphs and the structures and hydrogen bonding network for each form.

Methods. Ritonavir polymorphism was investigated using solid state spectroscopy and microscopy techniques including solid state NMR, Near Infrared Spectroscopy, powder X-ray Diffraction and Single crystal X-ray. A sensitive seed detection test was developed.

Results. Ritonavir polymorphs were thoroughly characterized and the structures determined. An unusual conformation was found for form II that results in a strong hydrogen bonding network A possible mechanism for heterogeneous nucleation of form II was investigated.

Conclusions. Ritonavir was found to exhibit conformational polymorphism with two unique crystal lattices having significantly different solubility properties. Although the polymorph (form II) corresponding to the “cis” conformation is a more stable packing arrangement, nucleation, even in the presence of form II seeds, is energetically unfavored except in highly supersaturated solutions. The coincidence of a highly supersaturated solution and a probable heterogeneous nucleation by a degradation product resulted in the sudden appearance of the more stable form II polymorph.

This is a preview of subscription content, log in to check access.


  1. 1.

    J. Haleblian and W. McCrone. Pharmaceutical applications of polymorphism. J. Pharm. Sci. 58:911-929 (1969).

    Google Scholar 

  2. 2.

    J. Dunitz, and J. Berstein. Disappearing polymorphs. J. Acc. Chem. Res. 28:193-200 (1995).

    Google Scholar 

  3. 3.

    M. Hassan, M. S. Salem, M. S. Sueliman, and N. M. Najib. Characterization of famotidine polymorphs. Int. J. Pharm. 149:227-232 (1997).

    Google Scholar 

  4. 4.

    N. V. Phadnis and R. Suryanarayanan. Polymorphism in anhydrous theophylline—Implications on the dissolution rate of theophylline tablets. J. Pharm. Sci. 86:1256-1263 (1997).

    Google Scholar 

  5. 5.

    R. Li, P. T. Mayer, J. Trivedi, and J. Fort. Polymorphism and crystallization behavior of Abbott-79175, a second generation 5-lipoxygenase inhibitor. J. Pharm. Sci. 85:773-780 (1996).

    Google Scholar 

  6. 6.

    D. Apperley, R. Fletton, R. Harris, R. Lancaster, S. Tavener, and T. Threlfall. Sulfathiazole polymorphism studied by magic-angle spinning NMR. J. Pharm. Sci. 88:1275-1280 (1999).

    Google Scholar 

  7. 7.

    M. Kuhnert-Brandstätter. Demonstration of the terms enantiotropy and monotropy in polymorphism research exemplified by flurbiprofen. J. Pharm. Sci. 88:103-108, (1999).

    Google Scholar 

  8. 8.

    C. Spancake. Solubility behavior of lamivudine crystal forms in recrystallization solvents. J. Pharm. Sci. 85:193-199 (1996).

    Google Scholar 

  9. 9.

    L. Carima. Crystal forms of piroxicam pivalate: Preparation and characterization of two polymorphs. J. Pharm. Sci. 87:333-337 (1998).

    Google Scholar 

  10. 10.

    Remington's Pharmaceutical Sciences, Osol, A Mack Publishing Co, 1980 pp. 1358.

  11. 11.

    H. L. Sham, C. Zhao, K. D. Stewart, D. Betebenner, S. Chang, H. Park, X. Kong, W. Rosenbrook, Jr., T. Herrin, D. Madigan, S. Vasavanonda, N. Lyons, A. Molla, A. Saldivar, K. C. Marsh, E. McDonald, N. E. Wideburg, J. F. Denissen, T. Robins, D. J. Kempf, J. J. Plattner, and D. W. Norbeck. A novel picomolar inhibitor of HIV type1 protease. J. Med. Chem. 39:392-397 (1996).

    Google Scholar 

  12. 12.

    D. Kempf, K. C. Marsh, J. F. Denissen, E. McDonald, S. Vasavanonda, C. A. Flentge, B. E. Green, L. Fino, C. H. Park, X. P. Kong, N. E. Wideburg, A. Saldivar, L. Ruiz, W. M. Kati, H. L. Sham, T. Robins, K. D. Stewart, A. Hsu, J. J. Plattner, J. M. Leonard, and D. W. Norbeck. ABT-538 is a potent inhibitor of Human Immunodeficiency Virus protease and has high oral bioavailability. Proc. Natl. Acad. Sci. 92:2484-2488 (1995).

    Google Scholar 

  13. 13.

    H. L. Sham, C. Zhao, K. C. Marsh, D. A. Betebenner, S. Q. Lin, E. Mcdonald, S. Vasavanonda, N. Wideburg, A. Saldivar, T. Robins, D. J. Kempf, J. J. Plattner, D. W. Norbeck. Potent inhibitors of HIV-1 protease with good oral bioavailabilities. Biochem. Biophys. Res. Commun. 211:159-165 (1995).

    Google Scholar 

  14. 14.

    W. I. Higuchi, P.K. Lau, T. Higuchi, J. W. Shell. Polymorphism and drug availability. J. Pharm. Sci. 52:150 (1963).

    Google Scholar 

  15. 15.

    J. Berridge. Proceedings of the Fourth International Conference on Harmonization, Brussels, P.F. D'Arcy, D. W. G. Harron (eds.), Physico-Chemical Characteristics of Drug Substances, Queen's University of Belfast, 1997 p. 66.

  16. 16.

    S. R. Byrn, R. Pfeiffer, and J. Stowell. Solid-State Chemistry of Drugs, second edition, SSCI Inc., 1999 p. 148.

  17. 17.

    H. Brittain, S.J. Bogdanowich D. E. Bugay, J. DeVincentis, G. Lewens, and A. Newman. Physical characterization of pharmaceutical solids. Pharm. Res. 8:963-973 (1991).

    Google Scholar 

  18. 18.

    W. Ostwald. Uber die vermeintliche Isomeric des roten und gelben Quecksilberoxyds und die Oberflashen spannung fester Korper. Z. Physikal Chem. 34:495-503 (1900).

    Google Scholar 

  19. 19.

    A. Burger and R. Ramberger. On the polymorphism of pharmaceuticals and other molecular crystals I. Mikrochim. Acta (Wien) II:259-271 (1979).

    Google Scholar 

  20. 20.

    A. Burger and R. Ramberger. On the polymorphism of pharmaceuticals and other molecular crystals II. Mikrochim. Acta (Wien) II:273-316, (1979).

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bauer, J., Spanton, S., Henry, R. et al. Ritonavir: An Extraordinary Example of Conformational Polymorphism. Pharm Res 18, 859–866 (2001). https://doi.org/10.1023/A:1011052932607

Download citation

  • polymorphism
  • crystal forms
  • ritonavir
  • Norvir
  • carbamate
  • AIDS drug