Inflammation

, Volume 25, Issue 3, pp 203–214 | Cite as

Inhibition of the Adherence of T-Lymphocytes to Epithelial Cells by a Cyclic Peptide Derived from Inserted Domain of Lymphocyte Function-Associated Antigen-1

  • Helena Yusuf-Makagiansar
  • Irwan T. Makagiansar
  • Teruna J. Siahaan

Abstract

Tissue inflammation is characterized by aggravated leukocyte infiltration into the sites of inflammation. The mechanism requires the interactions of leukocyte adhesion-molecules and their ligands in the inflamed tissues. In this study, we demonstrate that a cyclic peptide cLAB.L [cyclo1, 12-PenITDGEATDSGC], derived from the "inserted" or I-domain of LFA-1 is able to inhibit the adherence of T-lymphocytes to the epithelial cell monolayers. This inhibition has been thought to involve the disruption of LFA-1/ICAM-1 interaction. The heterotypic adhesion of phorbol ester-activated Molt-3 cells and IFN-γ-induced Caco-2 monolayers was inhibited upon treatment of the monolayers with monoclonal antibodies (MAbs) to adhesion molecules or with cLAB.L peptide. The adhesion can be inhibited by MAbs to ICAM-1, ICAM-2, and VCAM-1, and cLAB.L peptide in a concentration-dependent manner. However, none of the individual uses of these molecules led to a total inhibition. The inhibitory activity of cLAB.L is greatly reduced by low temperature and the absence of cell activation. Treatment of cLAB.L peptide may trigger an early event of apoptosis on activated but not on non-activated Molt-3 cells; no indication of peptide-induced apoptosis was found on Caco-2 cells. Taken together, data from this work suggest that cLAB.L may have applications to direct cell-targeted delivery during tissue inflammation.

leukocyte infiltration T-lymphocytes adhesion molecules apoptosis LFA-1-peptide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albelda, S. M., C. Wayne Smith, and P. A. Ward. 1994. Adhesion molecules and inflammatory injury. FASEB J. 8:504–512.Google Scholar
  2. 2.
    Yusuf-Makagiansar, H., M. E. Anderson, X. Song, J. S. Murray, and T. J. Siahaan. 2000. Modulation of adhesion molecules in lymphocyte activation and cell-cell adhesion. Curr. Top. Biochem. Res. 2:33–49.Google Scholar
  3. 3.
    Nakajima, S., D. C. Look, W. T. Roswit, M. Janice Bragdon, and M. J. Holtzman. 1994. Selective differences in vascular endothelial Inhibition of Adherence of T Lymphocytes 213 vs. airway epithelial-T cell adhesion mechanisms. Am. J. Physiol. 267:L422–L432.Google Scholar
  4. 4.
    Kaiserlian, D., D. Rigal, J. Abello, and J. Revillard. 1991. Expression, function and regulation of the intercellular adhesion molecule-1 (ICAM-1) on human intestinal epithelial cell lines. Eur. J. Immunol. 21:2415–2421.Google Scholar
  5. 5.
    Roebuck, R. A. and A. Finnegan. 1999. Regulation of intercellular adhesion molecule-1 (CD54) gene expression. J. Leukoc. Biol. 66:876–888.Google Scholar
  6. 6.
    Mousa, S. A. 1998. Cell adhesion molecules and extracellular matrix proteins: Potential therapeutic applications. Exp. Opin. Invest. Drugs 7:1159–1171.Google Scholar
  7. 7.
    Horton, M. A. 1999. Arg-Gly-Asp (RGD) peptides and peptidomimetics as therapeutics: Relevance for renal diseases. Exp. Nephrol. 7:178–184.Google Scholar
  8. 8.
    Duarte, E. A., G. Eberl, and G. Giampietro. 1996. Specific tolerization of active cytolytic T lymphocyte responses in vivo with soluble peptides. Cell. Immunol. 169:16–23.Google Scholar
  9. 9.
    Siahaan, T. J., S. A. Tibbets, S. D. S. Jois, M. A. Chan, and S. A. Benedict. 1996. Counter receptor binding domains that block or enhance binding to LFA-1 or ICAM-1. In: Peptides: Chemistry, Structure and Biology, Kaumaya, P. T. P., and R. S. Hodges, editors. pp. 792–793. Mayflower Scientific, England.Google Scholar
  10. 10.
    Fecondo, J. V., N. C. Pavuk, K. A. Silburn, D. M. Y. Read, A. S. Mansell, A. W. Boyd, and D. A. McPhee. 1993. Synthetic peptide analogs of intercellular adhesion molecule 1 (ICAM-1) inhibit HIV-1 replication in MT-2 cells. AIDS Res. Hum. Retrovirus 9:733–740.Google Scholar
  11. 11.
    Ross, L., F. Hassman, and L. Molony. 1992. Inhibition of Molt-4-endothelial adherence by synthetic peptides from the sequence of ICAM-1. J. Biol. Chem. 267:8537–8543.Google Scholar
  12. 12.
    Gürsoy, R. N., and T. J. Siahaan. 1999. Binding and internalization of an ICAM-1 peptide by the surface receptors of T-cells. J. Peptide Res. 53:414–421.Google Scholar
  13. 13.
    Gürsoy, R. N., S. D. S. Jois, and T. J. Siahaan. 1999. Structural recognition of an ICAM-1 peptide by its receptor on the surface of T cells: Conformational studies of cyclo (1,12)-Pen-Pro-Arg-Gly-Gly-Ser-Val-Leu-Val-Thr-Gly-Cys-OH. J. Peptide Res. 53:422–431.Google Scholar
  14. 14.
    De Fougerolles, A. R., X. Qin, and T. A. Springer. 1994. Characterization of the function of intercellular adhesion molecule (ICAM)-3 and comparison with ICAM-1 and ICAM-2 in immune responses. J. Exp. Med. 179:619–629.Google Scholar
  15. 15.
    Li, R., P. Nortamo, L. Valmu, M. Tolvanen, J. Huuskonen, C. Kantor, and C. G. Gahmberg. 1993. A peptide from ICAM-2 binds to the leukocyte integrin CD11a/CD18 and inhibits endothelial cell adhesion. J. Biol. Chem. 268:17513–17518.Google Scholar
  16. 16.
    Kotovuori, A., T. Pessa-Morikawa, P. Kotovuori, P. Nortamo, and C. G. Gahmberg. 1999. ICAM-2 and a peptide from its binding domain are efficient activators of leukocyte adhesion and integrin affinity. J. Immunol. 162:6613–6620.Google Scholar
  17. 17.
    Benedict, S. H., T. J. Siahaan, M. A. Chan, and S. A. Tibbetts. 1994. ICAM-1/LFA-1 short-chain peptides and method of using same. US Patent 229, 531.Google Scholar
  18. 18.
    Tibbetts, S. A., C. Chirathaworn, M. Nakashima, S. D. S. Jois, T. J. Siahaan, M. A. Chan, and S. H. Benedict. 1999. Peptides derived from ICAM-1 and LFA-1 modulate T cell adhesion and immune function in a mixed lymphocyte culture. Transplantation 68:685–692.Google Scholar
  19. 19.
    Luscinskas, F. W., A. F. Brock, M. A. Arnout, and M. A. Gimbrone. 1989. Endothelial-leukocyte adhesion molecule-1-dependent and leukocyte (CD11/CD18)-dependent mechanisms contribute to polymorphonuclear leukocyte adhesion to cytokine-activated human vascular endothelium. J. Immunol. 142:2257–2263.Google Scholar
  20. 20.
    Buckley, C. D., D. Pilling, N. V. Henriquez, G. Parsonage, K. Threlfall, D. Scheel-Toellner, D. L. Simmons, A. N. Akbar, J. M. Lord, and M. Salmon. 1999. RGD peptides induce apoptosis by direct caspase-3 activation. Nature 397:534–539.Google Scholar
  21. 21.
    Schriever, F., D. Korinth, A. Salahi, P. Lefterova, I. G. H. Schmidt-Wolf, and S. I. Behr. 1997. Human T lymphocytes bind to germinal centers of human tonsils via integrin a4/VCAM-1 and LFA-1/ICAM-1 and –2. Eur. J. Immunol. 27:35–39.Google Scholar
  22. 22.
    Chakravorty, S. J., A. J. Howie, P. Cockwell, D. Adu, and C. O. S. Savage. 1999. T lymphocyte adhesion mechanisms within inflamed human kidney. Am. J. Pathol. 154:503–514.Google Scholar
  23. 23.
    Huang, C., and T. A. Springer. 1995. A binding interface on the I domain of lymphocyte function-associated antigen-1 (LFA-1) required for specific interaction with intercellular adhesion molecule (ICAM-1). J. Biol. Chem. 270:19008–19016.Google Scholar
  24. 24.
    Edwards, C. P., K. L. Fisher, L. G. Presta, and S. C. Bodary. 1998. Mapping the intercellular adhesion molecule-1 and-3 binding site on the inserted domain of leukocyte function-associated antigen-1. J. Biol. Chem. 273:28937–28944.Google Scholar
  25. 25.
    Luscinskas, F. W., A. F. Brock, M. A. Arnout, and M. A. Gimbrone. 1989. Endothelial-leukocyte adhesion molecule-1-dependent and leukocyte (CD11/CD18)-dependent mechanisms contribute to polymorphonuclear leukocyte adhesion to cytokine-activated human vascular endothelium. J. Immunol. 142:2257–2263.Google Scholar
  26. 26.
    Lidington, E. A., D. L. Moyes, A. M. McCormack, and M. L. Rose. 1999. A comparison of primary endothelial cells and endothelial cell lines for studies of immune interactions. Transplant. Immunol. 7:239–246.Google Scholar
  27. 27.
    Dustin, M. L., K. H. Singer, D. T. Tuck, and T. A. Springer. 1988. Adhesion of T lymphocytes to epidermal keratinocytes is regulated by interferon g and is mediated by intercellular adhesion molecule 1 (ICAM-1). J. Exp. Med. 167:1323–1340.Google Scholar
  28. 28.
    Bloemen, P. G. M., M. C. van den Tweel, P. A. J. Henricks, F. Engels, S. S. Wagenaar, A. A. J. J. L. Rutten, and F. P. Nijkamp. 1993. Expression and modulation of adhesion molecules on human bronchial epithelial cells. Am. J. Respir. Cell. Mol. Biol. 9:586–593.Google Scholar
  29. 29.
    Li, X. C., A. M. Jevnikar, and D. R. Grant. 1997. Expression of functional ICAM-1 and VCAM-1 adhesion molecules by immortalized epithelial cell clone derived from the small intestine. Cell. Immunol. 175:58–66.Google Scholar
  30. 30.
    Atsuta, J., S. A. Sterbinsky, J. Plitt, L. M. Schwiebert, B. S. Bochner, and R. P. Schleimer. 1997. Phenotyping and cytokine regulation of the BEAS-2B human bronchial epithelial cell: Demonstration of inducible expression of the adhesion molecules VCAM-1 and ICAM-1. Am. J. Respir. Cell. Mol. Biol. 17:571–582.Google Scholar
  31. 31.
    Oertli, B., B. Beck-Schimmer, X. Fan, and R. P. Wüthrich. 1998. Mechanisms of hyaluronan-induced up-regulation of ICAM-1 and VCAM-1 expression by murine kidney tubular epithelial cells: hyaluronan triggers cell adhesion molecule expression through a mechanism involving activation of nuclear factor-k B and activating protein-1. J. Immunol. 161:3431–3437.Google Scholar
  32. 32.
    Springer, T. A. 1994. Traffic signals for lymphocyte recirculation and leukocyte emigration: The multi-step paradigm. Cell 76:301–314.Google Scholar
  33. 33.
    De Fougerolles, A. R., S. A. Stacker, R. Schwarting, and T. A. Springer. 1991. Characterization of ICAM-2 and evidence for a third counter-receptor for LFA-1. J. Exp. Med. 174:253–267.Google Scholar
  34. 34.
    McLaughlin, F., B. P. Hayes, C. M. T. Horgan, J. E. Beesley, C. J. Campbell, and A. M. Randi. 1998. Tumor necrosis factor (TNF)-a and interleukin (IL)-1b down-regulate intercellular adhesion molecule (ICAM)-2 expression on the endothelium. Cell. Adhes. Commun. 6:381–400.Google Scholar
  35. 35.
    Martinez-Cáceres, E., G. Ruggiero, H. Spits, M. Juan, J. Barceló, J. Vives, J. Martorell, and O. Viñas. 1996. Stimulation through CD50 (ICAM-3) induces both activation and programmed cell death of human thymocytes. Tissue Antigens 48:626–635.Google Scholar
  36. 36.
    Stucki, A., J. S. Hayflick, and B. M. Sandmaier. 2000. Antibody Makagiansar, Makagiansar, and Siahaan 214 engagement of intercellular adhesion molecule 3 triggers apoptosis of normal and leukaemic myeloid marrow cells. Br. J. Haematol. 108:157–166.Google Scholar
  37. 37.
    Luo, D., D. Vermijjlen, K. Vanderkerken, P. J. K. Kuppen, C. Seynaeve, M. Eddouks, M. Baekeland, and E. Wisse. 1999. Involvement of LFA-1 in hepatic NK cell (pit cell)-mediated cytolisis and apoptosis of colon carcinoma cells. J. Hepatol. 31:110–116.Google Scholar
  38. 38.
    Ruoslahti, E., and J. Reed. 1999. New way to activate caspases. Nature 397:479–480.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Helena Yusuf-Makagiansar
    • 1
  • Irwan T. Makagiansar
    • 1
  • Teruna J. Siahaan
    • 1
  1. 1.Department of Pharmaceutical Chemistry, Simons Research LaboratoriesThe University of KansasLawrence

Personalised recommendations