Skip to main content
Log in

The Adaptive Response to Aerobic Muscular Work in Athletes

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Standard parameters of external respiration at the aerobic–anaerobic transition and above the anaerobic (ventilatory) threshold (AT) were studied in highly trained athletes during an incremental treadmill test. The efficiency of the adaptive response (AR) was inferred from changes in the heart rate and VO2gradients beyond the AT. Several AR types differing in the efficiency of the AT to the physical load were identified. The most efficient AR was associated with a decrease in the heart rate gradient and an increase in the VO2gradient above the AT. The least efficient AR was associated with an increase in the heart rate gradient and a decrease in the VO2gradient above the AT. The efficiency of the AR to cyclic muscular load varies daily in individual athletes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Radchenko, A.S.,Bondarenko, S.K.,Gromov, A.S., et al., A Rapid Test for Evaluating the Pre-Exercise State of Athletes in the Course of Preparation for Competition in Cyclic Sports, “Fizicheskaya kul'tura i sport v sovremennom obrazovanii: metodologiya i praktika” (Theor. Conf. “Physical Training and Sports in Modern Education: Methodology and Practice”), St. Petersburg, 1993, p. 26.

  2. Medvedev, V.I., Functional States of the Human Brain, Mekhanizmy deyatel'nosti mozga cheloveka (Rukovodstvo po fiziologii) (Mechanisms of Brain Activity in Man (Manual of Physiology)), Leningrad: Nauka, 1988, part 1, p. 300.

    Google Scholar 

  3. Medvedev, V.I. andLeonova, A.B., Human Functional States, Fiziologiya trudovoi deyatel'nosti (Physiology of Work), St. Petersburg: Nauka, 1993, p. 25.

    Google Scholar 

  4. Seluyanov, V.N.,Myakinchenko, E.B.,Kholodnyak, D.B., andObukhov, S.M., Physiological Mechanisms and Methods of Estimation of the Aerobic and Anaerobic Thresholds, Teor. Prakt. Fiz. Kul't., 1991, no. 10, p. 10.

  5. Zorin, A.I., Estimation of the Anaerobic Threshold with Several Respiratory Parameters, Voprosy fizicheskogo vospitaniya studentov (Problems in the Physical Education of Students), St. Petersburg: S.-Peterb. Gos. Univ., 1992, no. 39, p. 109.

    Google Scholar 

  6. Borilkevich, V.E.,Zorin, A.I.,Mikhailov, B.A., andShirinyan, A.A., Osnovy begovoi podgotovki v sportivnom orientirovanii (Basics of Running Training in Sports Orientation), St. Petersburg: S.-Peterb. Gos. Univ., 1994.

    Google Scholar 

  7. Myakinchenko, E.B., Lokal'naya vynoslivost' v bege (Local Endurance in Running), Moscow: Fizkul'tura, Obrazovanie, Nauka, 1997.

    Google Scholar 

  8. Brooke, J.D. andHamley, E.J., The Heart Rate-Physical Work Curve Analysis for the Prediction of Exhausting Work Ability, Med. Sci. Sports Exerc., 1972, vol. 4, no. 1, p. 23.

    Google Scholar 

  9. Conconi, F.,Ferrari, M.,Ziglio, P.G., et al., Determination of the Anaerobic Threshold by a Noninvasive Field Test in Runners, Eur. J. Appl. Physiol., 1982, vol. 52, p. 869.

    Google Scholar 

  10. Radchenko, A.S.,Borilkevich, V.E., andZorin, A.I., Estimating the Efficiency of the Adaptive Response to Cyclic Muscular Work, Teor. Prakt. Fiz. Kul't., 1997, no. 2, p. 2.

  11. Heck, H.,Beckers, K.,Lammerschmidt, W., et al., Identification, Objectivity, and Validity of the Conconi Threshold by the Cycle Stress Test, Dtsch. Z. Sportmed., 1989, vol. 40, p. 388.

    Google Scholar 

  12. Pokan, R.,Hofmann, P.,Preidler, K., et al., Correlation between Inflection of Heart Rate/Work Performance Curve and Myocardial Function in Exhausting Cycle Ergometer Exercise, Eur. J. Appl. Physiol., 1993, vol. 67, p. 385.

    Google Scholar 

  13. Hofmann, P.,Pokan, P.,Preidler, K., et al., Relationship between Heart Rate Threshold, Lactate Turning Point, and Myocardial Function, Int. J. Sports Med., 1994, vol. 15, p. 232.

    Google Scholar 

  14. Hofmann, P.,Pokan, R.,von Duvillard, S.P., et al., Heart Rate Performance Curve during Incremental Cycle Ergometer Exercise in Healthy Young Male Subjects, Med. Sci. Sports Exerc., 1997, vol. 29, p. 762.

    Google Scholar 

  15. Ivanov, K.P., Osnovy energetiki organizma: Teoreticheskie i prakticheskie aspekty (Basics of Energy Metabolism of the Organism: Theoretical and Applied Aspects), vol. 2: Biologicheskoe okislenie i ego obespechenie kislorodom (Biological Oxidation and Oxygen Supply), St. Petersburg: Nauka, 1993.

    Google Scholar 

  16. Shuchhardt, S., Myocardial Oxygen Pressure, Adv. Exp. Med. Biol., 1985, vol. 191, p. 21.

    Google Scholar 

  17. Sonnenblich, E., Contractility of Cardiac Muscle, Circ. Res., 1970, vol. 27, p. 479.

    Google Scholar 

  18. Ross, J., Mechanisms of Cardiac Contraction: What Roles for Preload, Afterload and Inotropic State in Heart Failure, Eur. Heart J., 1983, vol. 4, suppl. A, p. 19.

    Google Scholar 

  19. Pokan, R.,Hofmann, P.,von Duvillard, S.P., et al., Parasympathetic Receptor Blockade and the Heart Rate Performance Curve, Med. Sci. Sports Exerc., 1998, vol. 30, no. 2, p. 229.

    Google Scholar 

  20. Hofmann, P.,Pokan, O.,Preidler, K., et al., Relationship between Heart Rate Threshold, Lactate Turn Point and Myocardial Function, Int. J. Sports Med., 1994, vol. 15, p. 232.

    Google Scholar 

  21. Robinson, B.F.,Epstein, S.E.,Beiser, D., andBrounwold, E., Control of Heart Rate by the Autonomic Nervous System, Circ. Res., 1966, vol. 19, p. 400.

    Google Scholar 

  22. Ekblom, B.,Goldbarg, A.N.,Kilbom, A., andAstrand, P., Effect of Atropine and Propranolol on the Oxygen Transport System during Exercise in Man, Scand. J. Clin. Invest., 1972, vol. 30, p. 35.

    Google Scholar 

  23. Pokan, R.,Hofmann, P.,Lehmann, M., et al., Heart Rate Deflection Related to Performance Curve and Plasma Catecholamine Response during Incremental Cycle Ergometer Exercise, Eur. J. Appl. Physiol., 1995, vol. 70, p. 175.

    Google Scholar 

  24. Karpman, V.L. andOrel, V.P., Impedance of the Arterial System and Cardiac Activity, Fiziol. Chel., 1985, vol. 11, no. 4, p. 628.

    Google Scholar 

  25. Ludbrook, J., Reflex Control of Blood Pressure during Exercise, Annu. Rev. Physiol., 1983, vol. 45, p. 155.

    Google Scholar 

  26. Milcher, A. andDonald, D.E., Maintained Ability of Carotid Baroreflex to Regulate Arterial Pressure during Exercise, Am. J. Physiol., 1981, vol. 241, p. H.838.

    Google Scholar 

  27. Ebert, T.J., Baroreflex Responsiveness Is Maintained during Isometric Exercise in Humans, J. Appl. Physiol., 1986, vol. 61, p. 797.

    Google Scholar 

  28. Strange, S.,Rowell, L.B.,Christensen, N.J., andSaltin, B., Cardiovascular Responses to Carotid Sinus Baroreceptor Stimulation during Maximal Exercise with Arms and Legs in Man, Acta Physiol. Scand., 1990, vol. 138, p. 145.

    Google Scholar 

  29. Mitchell, J.H. andSchmidt, R.F., Cardiovascular Reflex Control by Afferent Fibers from Skeletal Muscle Receptors, Handbook of the Cardiovascular System, Humilton, W.F. andDow, P., Eds., Bethesda, Md.: Am. Physiol. Soc., 1983, vol. 3, p. 623.

    Google Scholar 

  30. Victor, R.G.,Bertocci, L.A.,Pryor, S.L., andNunnally, R.L., Sympathetic Nerve Discharge Is Coupled to Muscle Cell pH during Exercise in Humans, J. Clin. Invest., 1988, vol. 82, p. 1301.

    Google Scholar 

  31. Saltin, B. andStrange, S., Maximal Oxygen Uptake: “Old” and “New” Arguments for a Cardiovascular Limitation, Med. Sci. Sports Exerc., 1992, vol. 24, p. 30.

    Google Scholar 

  32. Ivanov, K.P.,Kalinina, M.K., andLevkovich, Yu.I., Blood Flow Velocity in Capillaries of Brain and Muscles and Its Physiological Significance, Microvasc. Res., 1981, vol. 22, p. 143.

    Google Scholar 

  33. Ivanov, K.P.,Kalinina, M.K., andLevkovich, Yu.I., Microcirculation Velocity Changes under Hypoxia in Brain, Muscles, Liver and Their Physiological Signifi-cance, Microvasc. Res., 1985, vol. 30, p. 10.

    Google Scholar 

  34. Honig, C.R.,Odoroff, C.L., andFrierson, J.L., Capillary Recruitment in Exercise: Rate, Extent, Uniformity and Relation to Blood Flow, Am. J. Physiol., 1980, vol. 238, p. H31.

    Google Scholar 

  35. Federspiel, W.J., A Model Study of Intracellular Oxygen Gradients in a Myoglobin-Containing Skeletal Muscle Fiber, Biophys. J., 1986, vol. 49, p. 857.

    Google Scholar 

  36. Honig, C.R.,Gayeski, T.E.J.,Federspiel, W.J., et al., Muscle O2 Gradients from Hemoglobin to Cytochrome: New Concepts, New Complexities, Adv. Exp. Med. Biol., 1984, vol. 169, p. 23.

    Google Scholar 

  37. Wittenberg, B.A. andWittenberg, J.B., Transport of Oxygen in Muscle, Annu. Rev. Physiol., 1989, vol. 51, p. 857.

    Google Scholar 

  38. Nemirovskaya, T.L.,Shenkman, B.S.,Nekrasov, A.N., et al., Relationships of the Hematological and Muscular Parameters of Oxygen Transport to Performance in Endurance-Trained Subjects, Fiziol. Chel., 1993, vol. 19, no. 1, p. 27.

    Google Scholar 

  39. Gollnick, P.D.,Armstrong, R.B.,Saubert, C.W. IV, et al., Glycogen Depletion Pattern in Human Skeletal Muscle Fibers during Prolonged Work, Pflugers Arch., 1973, vol. 344, p. 1.

    Google Scholar 

  40. Gollnick, P.D.,Piehl, K., andSaltin, B., Selective Glycogen Depletion Pattern in Human Muscle Fibers after Exercise of Varying Intensity and at Varying Pedaling Rates, J. Physiol., 1974, vol. 247, p. 45.

    Google Scholar 

  41. Vollestad, N.K.,Vaage, O., andHermansen, L., Muscle Glycogen Depletion Patterns in Type I and Subgroups of Type II Fibers during Prolonged Severe Exercise in Man, Acta Physiol. Scand., 1984, vol. 122, p. 433.

    Google Scholar 

  42. Vollestad, N.K. andBlom, P.C.S., Effect of Varying Exercise Intensity on Glycogen Depletion in Human Muscle Fibers, Acta Physiol. Scand., 1985, vol. 125, p. 395.

    Google Scholar 

  43. Hermansen, L.,Hultman, E., andSaltin, B., Muscle Glycogen during Prolonged Severe Exercise, Acta Physiol. Scand., 1967, vol. 71, p. 129.

    Google Scholar 

  44. Holloszy, J.P. andBooth, F.W., Biochemical Adaptations to Endurance Exercise in Muscle, Annu. Rev. Physiol., 1976, vol. 38, p. 273.

    Google Scholar 

  45. McGilvery, R.W., The Use of Fuels for Muscular Work, Metabolic Adaptation to Prolonged Physical Exercise, Howald, H. andPoortmans, J.R., Eds., Basel: Birkhauser, 1975, p. 12.

    Google Scholar 

  46. Antonutto, G. andDi Prampero, P.E., The Concept of Lactate Threshold, J. Sports Med. Phys. Fitness, 1995, vol. 35, p. 6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radchenko, A.S., Borilkevich, V.E., Zorin, A.I. et al. The Adaptive Response to Aerobic Muscular Work in Athletes. Human Physiology 27, 239–246 (2001). https://doi.org/10.1023/A:1011043803841

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011043803841

Keywords

Navigation