Skip to main content
Log in

Th1 Cytokines Stimulate RANTES Chemokine Secretion by Human Astroglial Cells Depending on De Novo Transcription

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

β-Chemokines induce the directional migration of monocytes and T lymphocytes that are implicated in the pathogenesis of multiple sclerosis (MS) lesions. RANTES is a member of the β-chemokine family that has been detected in the lesions of MS patients. However, the cellular sources of RANTES message and the molecular basis for the regulation of its production in MS lesions are not well understood. Glial cells may be a major source of RANTES in vivo and have been shown to produce RANTES in vitro. Thus, the objective of this study was to establish a model system for studying the regulation of RANTES expression by cytokines in cultured human glial cells, and to determine the mechanism involved in the process. We show that the Th1 cytokines TNF-α and IL-1β independently induce RANTES mRNA and chemokine levels in human U-251 MG astroglial cells, and that these effects are time- and concentration-dependent. In addition, we demonstrate that both cytokines increased the rate of transcription of the RANTES gene, as estimated by in vitro nuclear transcript elongation assays. The transcriptional activity in TNF-α-treated U-251 MG cells started to increase at 2 h and peaked at 8 h, with levels more than 14 times greater than controls. We further show that NF-κB may play a critical role in the up-regulation of human RANTES gene expression in this system. Gel shift assays revealed an induction of in vitro nuclear extract binding activity to the NF-κB element of RANTES in cells incubated with the Th1 cytokines. These observations suggest that human astroglia, within diseased brain, may be stimulated to produce RANTES chemokine in response to TNF-α and IL-1β, and that this effect of the Th1 cytokines is attributed to increase of transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Trapp, B. D., Peterson, J., Ransohoff, R. M., Rudick, R., Mork, S., and Bo, L. 1998. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338:278–285.

    Google Scholar 

  2. McFarlin, D. E., and McFarland, H. F. 1982. Multiple sclerosis. N. Engl. J. Med. 307:1183–1188 and 1246-1251.

    Google Scholar 

  3. Prineas, J. W., and Wright, R. G. 1978. Macrophages, lymphocytes, and plasma cells in the perivascular compartment in chronic multiple sclerosis. Lab. Invest. 38:409–418.

    Google Scholar 

  4. Prineas, J. W. 1985. The neuropathology of MS. Handb. Clin. Neurol. 3:213–257.

    Google Scholar 

  5. Traugott, U., Shevach, E., Chiba, J., and Raine. C. S. 1981. Autoimmune encephalomyelitis: Simultaneous identification of T-and B-cells in the target organ. Science 214:1251–1253.

    Google Scholar 

  6. Traugott, U., Reinherz, E. L., and Raine, C. S. 1983. Multiple sclerosis. Distribution of T-cell subsets within active chronic lesions. Science 219:308–310.

    Google Scholar 

  7. Lindholm, D., Castren, E., and Keifer, R. 1992. Transforming growth factor-β1 in the rat brain: increase after injury and inhibition of astrocyte proliferation. J. Cell Biol. 117:395–400.

    Google Scholar 

  8. Traugott, U. and Lebon, P. 1988. Multiple sclerosis: involvement of interferons in lesion pathogenesis. Ann. Neurol. 24:243–250.

    Google Scholar 

  9. Schmidt, B., Stoll, G., Toyka, K. V., and Hartung, H.-P. 1990. Rat astrocytes express interferon-γ immunoreactivity in normal optic nerve and after nerve transection. Brain Res. 515:347–355.

    Google Scholar 

  10. Eizenberg, O., Faberelman, A., Lotan, A., and Schwartz, M. 1995. Interleukin-2 transcripts in human and rodent brains-possible expression by astrocytes. J. Neurochem. 64:1928–1936.

    Google Scholar 

  11. Fontana, A., Kristensen, F., and Dubs, R. 1982. Production of prostaglandin E and an interleukin-1 like factor by cultured astrocytes and C6 glioma cells. J. Immunol. 129:2413–2419.

    Google Scholar 

  12. Lieberman, A. P., Pitha, P. M., Shin, H. S., and Shin, M. L. 1989. Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus. Proc. Natl. Acad. Sci. USA 86:6348–6352.

    Google Scholar 

  13. Frei, K., Bodmer, S., Schwerdel, C., and Fontana, A. 1985. Astrocytes of the brain synthesize interleukin 3-like factors. J. Immunol. 135:4044–4047.

    Google Scholar 

  14. Frei, K., Malipiero, U. V., and Leist, T. P. 1989. On the cellular source and function of interleukin 6 produced in the central nervous system in viral diseases. Eur. J. Immunol. 19:689–694.

    Google Scholar 

  15. Benveniste, E. N., Sparacio, S. M., and Norris, J. G. 1990. Induction and regulation of interleukin-6 gene expression in rat astrocytes. J. Neuroimmunol. 30:201–212.

    Google Scholar 

  16. Hao, C., Guilbert, L. J., and Fedoroff, S. 1990. Production of colony-stimulating factor-1 (CSF-1) by mouse astroglia in vitro. J. Neurosci. Res. 27:314–323.

    Google Scholar 

  17. Tedeschi, B., Barrett, J. N., and Keane, R. W. 1986. Astrocytes produce interferon that enhances the expression of H-2 antigens on a subpopulation of brain cells. J. Cell Biol. 102:2244–2253.

    Google Scholar 

  18. da Cunha, A. and Vitkovic, L. 1992. Transforming growth factor-β1 (TGF-β1) expression and regulation in rat cortical astrocytes. J. Neuroimmunol. 36:157–169.

    Google Scholar 

  19. Aloisi, F., Care, A., and Borsellino, G. 1992. Production of hemolymphopoietic cytokines (IL-6, IL-8, colony stimulating factors) by normal human astrocytes in response to IL-1β and tumor necrosis factor-α. J. Immunol. 149:2358–2366.

    Google Scholar 

  20. Barnes, D. A., Huston, M., Holmes, R., Benveniste, E. N., Yong, V. W., and Perez, D. H. 1996. Induction of RANTES expression by astrocytes and astrocytoma cell lines. J. Neuroimmunol. 71:207–214.

    Google Scholar 

  21. Janabi, N., Stefano, M. D., Wallon, C., Hery, C., Chiodi, F., and Tardieu, M. 1998. Induction of human immunodeficiency virus type 1 replication in human glial cells after proinflammatory cytokines stimulation: Effect of IFN-γ, IL-1β, and TNF-α on differentiation and chemokine production in glial cells. Glia 23:304–315.

    Google Scholar 

  22. Schall, T. J., Bacon, K., Toy, K. J., and Goddel, D. V. 1990. Selective attraction of monocytes and T lymphocytes of memory phenotype by cytokine RANTES. Nature 347:669–671.

    Google Scholar 

  23. Schall, T. J. 1991. Biology of the RANTES/SIS cytokine family. Cytokine 3:165–183.

    Google Scholar 

  24. Bigner, D. D., Bigner, S. H., Ponten, J., Westermark, B., Eny, L. F., and Wikstrand, C. F. 1981. Heterogeneity of genotypic and phenotypic characteristics of fifteen permanent cell lines derived from human gliomas. J. Neuropathol. Exp. Neurol. 40:210–218.

    Google Scholar 

  25. Noe, K. H., Cenciarelli, C., Moyer, S. A., Rota, P. A., and Shin, M. L. 1999. Requirements for measles virus induction of RANTES chemokine in human astrocytoma-derived U373 cells. J. Virol. 73:3117–3124.

    Google Scholar 

  26. Chomczynski, P. and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.

    Google Scholar 

  27. Li, Q., Falkler, W. A., and Bever, C. T. 1997. Endotoxin induces increased intracellular cathepsin B activity in THP-1 cells. Immunopharmacol. Immunotoxicol. 19:215–237.

    Google Scholar 

  28. Li, Q. and Bever, C. T. 1997. Interferon-γ induced increases in intracellular cathepsin B activity in THP-1 cells are dependent on RNA transcription. J. Neuroimmunol. 74:77–84.

    Google Scholar 

  29. Li, Q., Bostick-Bruton, F., and Reed, E. 1998. Effect of interleukin-1α and tumor necrosis factor-α on cisplatin-induced ERCC-1 mRNA expression in a human ovarian carcinoma cell line. Anticancer Res. 18:2283–2288.

    Google Scholar 

  30. Li, Q., Tsang, B., Bostick-Bruton, F., and Reed, E. 1999. Modulation of ERCC-1 messenger RNA expression by pharmacological agents in human ovarian carcinoma cells. Biochem. Pharmacol. 57:347–353.

    Google Scholar 

  31. Li, Q., Yu, J. J., Mu, C., Yunmbam, M. K., Slavsky, D., Cross, C. L., Bostick-Bruton, F., and Reed, E. 2000. Association between the level of ERCC-1 expression and the repair of cisplatin-induced DNA damage in human ovarian cancer cells. Anticancer Res. 20:645–652.

    Google Scholar 

  32. Sambrook, J., Fritsch, E. F., and Maniatis, T. 1989. Molecular Cloning: A laboratory Manual. Cold Spring Harbor, New York: Cold Spring Harbor.

    Google Scholar 

  33. Raj, N. B. K. and Pitha, P. M. 1983. Two levels of regulation of beta-interferon gene expression in human cells. Proc. Natl. Acad. Sci. USA 80:3923–3927.

    Google Scholar 

  34. Li, Q., Gardner, K., Zhang, L., Tsang, B., Bostick-Bruton, F., and Reed, E. 1998. Cisplatin induction of ERCC-1 mRNA expression in A2780/CP70 human ovarian cancer cells. J. Biol. Chem. 273:23419–23425.

    Google Scholar 

  35. Li, Q., Ding, L., and Bever, C. T. 1998. Interferon-γ induces cathepsin B expression in a human macrophage-like cell line by increasing both transcription and mRNA stability. Int. J. Mol. Med. 2:181–186.

    Google Scholar 

  36. Li, Q., Zhang, L., Tsang, B., Gardner, K., Bostick-Bruton, F., and E. Reed. 1999. Phorbol ester exposure activates an AP-1-mediated increase in ERCC-1 messenger RNA expression in human ovarian tumor cells. Cell. Mol. Life Sci. 55:456–466.

    Google Scholar 

  37. Zhang, L., Zhan, S., Li, Q., Kim, M., Seth, P., and Helman, L. J. 1998. AP-2 may contribute to IGF-II overexpression in rhabdomyosarcoma. Oncogene 17:1261–1270.

    Google Scholar 

  38. Nelson, P. J., Kim, H. T., Manning, W. C., Goralski, T. J., and Krensky, A. M. 1993. Genomic organization and transcriptional regulation of the RANTES chemokine gene. J. Immunol. 151:2601–2612.

    Google Scholar 

  39. Snedecor, G. W. 1956. Statistical Methods. Ames, Iowa: Iowa State University.

    Google Scholar 

  40. Snedecor, G. W. and Cochran, W. G. 1967. Statistical methods. 6th ed. Ames, IA: The Iowa State University Press, Pages 1–593.

    Google Scholar 

  41. Moriuchi, H., Moriuchi, M., and Fauci, A. S. 1997. Nuclear factor-κB potently up-regulates the promoter activity of RANTES, a chemokine that blocks HIV infection. J. Immunol. 158:3483–3491.

    Google Scholar 

  42. Thomas, L. H., Friedland, J. S., Sharland, M., and Becker, S. 1998. Respiratory syncytial virus-induced RANTES production from human bronchial epithelial cells is dependent on nuclear factor-κB nuclear binding and is inhibited by adenovirus-mediated expression of inhibitor of κBα. J. Immunol. 161:1007–1016.

    Google Scholar 

  43. Ayad, O., Stark, J. M., Fiedler, M. M., Menendez, I. Y., Ryan, M. A., and Wong, H. R. 1998. The heat shock response inhibits RANTES gene expression in cultured human lung epithelium. J. Immunol. 161:2594–2599.

    Google Scholar 

  44. Zoja, C., Donadelli, R., Colleoni, S., Figliuzzi, M., Morigi, M., and Remuzzi, G. 1998. Protein overload stimulates RANTES production by proximal tubular cells depending on NF-κB activation. Kidney Int. 53:1608–1615.

    Google Scholar 

  45. Wang, X., Jobin, C., Allen, J. B., Roberts, W. L., and Jaffe, G. J. 1999. Suppression of NF-κB-dependent proinflammatory gene expression in human RPE cells by a proteasome inhibitor. Invest. Ophthalmol. Vis. Sci. 40:477–486.

    Google Scholar 

  46. Hu, S., Chao, C. C., Sheng, W. S., Sutton, R. L., Rockswold, G. L., and Peterson, P. K. 1999. Inhibition of microglial cell RANTES production by IL-10 and TGF-β. J. Leukoc. Biol. 65:815–821.

    Google Scholar 

  47. Oppenheim, J. J., Zachariae, C. O., Mukaida, N., and Matsushima, K. 1991. Properties of the novel proinflammatory supergene & quot; intercrine & quot; cytokine family. Annu. Rev. Immunol. 9:617–648.

    Google Scholar 

  48. Van Damme, J. 1994. Interleukin-8 and related molecules. Pages 185–208. In: A. Thompson, ed. The Cytokine Handbook. New York: Academic Press.

    Google Scholar 

  49. Karpus, W. J., Lukacs, N. W., McRae, B. L., Strieter, R. M., Kunkel, S. L., and Miller, S. D. 1995. An important role for the chemokine macrophage inflammatory protein-1α in the pathogenesis of the T cell-mediated autoimmune disease, experimental autoimmune encephalomyelitis. J. Immunol. 155:5003–5010.

    Google Scholar 

  50. Karpus, W. J., and Ransohoff, R. M. 1998. Chemokine regulation of experimental autoimmune encephalomyelitis: Temporal and spatial expression patterns govern disease pathogenesis. J. Immunol. 161:2667–2671.

    Google Scholar 

  51. Glabinski, A. R., Tuohy, V. K., and Ransohoff, R. M. 1998. Expression of chemokines RANTES, MIP-1α and GRO-α correlates with inflammation in acute experimental autoimmune encephalomyelitis. Neuroimmunomodulation 5:166–171.

    Google Scholar 

  52. Sun, D., Hu, X., Liu, X., Whitaker, J. N., and Walker, W. S. 1997. Expression of chemokine genes in rat glial cells: The effect of myelin basic protein-reactive encephalitogenic T cells. J. Neuroscience Res. 48:192–200.

    Google Scholar 

  53. Schall, T. J., Jongstra, J., Bradley, J. D., Jorgensen, J., Davis, M. M., and Krensky, A. M. 1988. A human T cell-specific molecule is a member of a new gene family. J. Immunol. 141:1018–1025.

    Google Scholar 

  54. Kuna, P., Reddigari, S. R., Schall, T. J., Rucinski, D., Sadick, M., and Kaplan, A. P. 1993. Characterization of the human basophil response to cytokines, growth factors, and histamine releasing factors of the intercrine/chemokine family. J. Immunol. 150:1932–1943.

    Google Scholar 

  55. Godiska, R., Chantry, D., Dietsch, G. N., and Gray, P. W. 1995. Chemokine expression in murine experimental allergic encephalomyelitis. J. Neuroimmunol. 58:167–176.

    Google Scholar 

  56. Noe, K. H., Fisher, S. N., Dhib-Jalbut, S. S., and Shin, M. L. 1996. Induction of cytokine RANTES by virus in astrocytes. J. Neurochem. 66:S71D.

    Google Scholar 

  57. Marfaing-Koka, A., Devergne, O., Gorgone, G., Portier, A., Schall, T. J. and Emilie, D. 1995. Regulation of the production of the RANTES chemokine by endothelial cells: Synergistic induction by IFN plus TNF-α and inhibition by IL-4 and IL-13. J. Immunol. 154:1870–1877.

    Google Scholar 

  58. Selmaj, K., Raine, C. S., Cannella, B., and Brosnan, C. F. 1991. Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis brain lesions. J. Clin. Invest. 87:949–954.

    Google Scholar 

  59. Hvas, J., McLean, C., Justesen, J., Kannourakis, G., Steinman, L., and Bernard, C. C. A. 1997. Perivascular T cells express the pro-inflammatory chemokine RANTES mRNA in multiple sclerosis lesions. Scand. J. Immunol. 46:195–203.

    Google Scholar 

  60. Hvas, J. and Bernard, C. C. A. 1998. Molecular detection and quantitation of the chemokine RANTES in mRNA neurological brain. APMIS 106:598–604.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q.Q., Bever, C.T. Th1 Cytokines Stimulate RANTES Chemokine Secretion by Human Astroglial Cells Depending on De Novo Transcription. Neurochem Res 26, 125–133 (2001). https://doi.org/10.1023/A:1011042711631

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011042711631

Navigation