Skip to main content
Log in

Mössbauer spectroscopic studies of defect structure and alloying effects in nanostructured materials

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Mössbauer spectroscopy provides spectral information from both ordered and structurally disordered regions of a solid and is therefore well suited for the atomic-scale characterisation of materials with very high defect concentrations. This applies especially to nanocrystalline materials where 5–50% of the atoms may be located at planar defects such as grain boundaries. In this paper, the range of Mössbauer spectroscopy in exploring the structure of nanostructured materials will be discussed in the form of case studies dealing with (i) nanometer-sized antiphase domains in the intermetallic compound Fe3−x Si1+x , (ii) ball-milling induced structural changes and alloying effects in dilute Al(57Fe) and Y(57Fe) alloys, and (iii) the Mössbauer signature of grain boundaries in nanocrystalline W(57Fe).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, in: Proc. 2nd Risø Int. Symp. on Metall. and Mater. Sci., eds. N. Hansen, A. Horsewell, T. Leffers and H. Lilholt (Risø National Lab., Roskilde, 1981) pp. 15–21.

    Google Scholar 

  2. H. Gleiter, in: Mechanical Properties and Deformation Behaviour of Materials, eds. M. Nastasi et al. (Kluwer Academic, Amsterdam, 1993) pp. 3–35.

    Google Scholar 

  3. C.C. Koch, Mater. Sci. Forum 88–90 (1992) 243–262.

    Article  Google Scholar 

  4. U. Herr, J. Jing, R. Birringer, U. Gonser and H. Gleiter, Appl. Phys. Lett. 77 (1987) 472–474.

    Article  ADS  Google Scholar 

  5. S.J. Campbell and H. Gleiter, in: Mössbauer Spectroscopy Applied to Magnetism and Magnetic Materials, Vol. 1, eds. G.S. Long and F. Grandjean (Plenum, New York, 1993) pp. 241–303.

    Google Scholar 

  6. S.J. Campbell, J. Chadwick, R.B. Pollard, H. Gleiter and U. Gonser, Phys. B 205 (1995) 72–80.

    Article  ADS  Google Scholar 

  7. S. Trapp, C.T. Limbach, U. Gonser, S.J. Campbell and H. Gleiter, Phys. Rev. Lett. 75 (1995) 3760–3763.

    Article  ADS  Google Scholar 

  8. H. Karzel, G. McMahon, W. Potzel, W. Schiessl, M. Steiner, U. Hiller, G.M. Kalvius, H. Gleiter, D.W. Mitchell and T.P. Das, Hyp. Interact. 95 (1995) 247–255.

    Article  ADS  Google Scholar 

  9. J. Weissmüller, R.D. Shull, G. Rixecker, R.D. McMichael and L.H. Bennett, Nanostruct. Mater. 7 (1996) 161–178.

    Article  Google Scholar 

  10. G. Rixecker, P. Schaaf and U. Gonser, Phys. Stat. Sol. (A) 139 (1993) 309–320.

    Google Scholar 

  11. G. Rixecker, P. Schaaf and U. Gonser, Phys. Stat. Sol. (A) 151 (1995) 291–298.

    Google Scholar 

  12. G. Rixecker, R. Birringer, U. Gonser and H. Gleiter, Phys. Stat. Sol. (A) 173 (1999) 305–316.

    Article  ADS  Google Scholar 

  13. A. Kochendörfer, Z. Kristallogr., Mineral. Petrogr. 105 (1944) 393–480.

    Google Scholar 

  14. W. Kündig, Nucl. Instr. Meth. 75 (1969) 336–340.

    Article  Google Scholar 

  15. G. Le Caër and J.M. Dubois, J. Phys. E. 12 (1979) 1083–1090.

    Article  ADS  Google Scholar 

  16. D.G. Rancourt, Nucl. Instr. Meth. B 44 (1989) 199–210.

    Article  ADS  Google Scholar 

  17. O. Kubaschewski, Iron Binary Phase Diagrams (Springer-Verlag, Berlin, 1982).

    Google Scholar 

  18. The International Union of Crystallography, Struct. Report 9 (1942–1944) 61–62.

  19. Y.P. Yelsukov, V.A. Barinov, T.P. Lapina, V.R. Galakhov and G.N. Konygin, Phys. Met. Metall. 60 (1985) 83–88.

    Google Scholar 

  20. M.B. Steams, Phys. Rev. 129 (1963) 1136–1144.

    Article  ADS  Google Scholar 

  21. M. Arita, S. Nasu and F.E. Fujita, Trans. Jap. Inst. Met. 26 (1985) 710–720.

    Google Scholar 

  22. Y.P. Yelsukov, V.A. Barinov and G.N. Konygin, Phys. Met. Metall. 62 (1986) 85–90.

    Google Scholar 

  23. K. Vojtechovský and T. Zemcík, Czech. J. Phys. B 24 (1974) 171–178.

    Article  ADS  Google Scholar 

  24. S. Matsumura, H. Oyama and K. Oki, Mater. Trans., JIM 30 (1989) 695–706.

    Google Scholar 

  25. K. Hilfrich, W. Kölker, W. Petry, O. Schärpf and E. Nembach, Z. Metallkde. 84 (1993) 255–258.

    Google Scholar 

  26. Z.Q. Gao and B. Fultz, Phil. Mag. B 67 (1993) 787–800.

    Google Scholar 

  27. C. Janot and H. Gibert, Phil. Mag. 26 (1972) 545–568.

    Google Scholar 

  28. Y.D. Dong, W.H. Wang, L. Liu, K.Q. Xiao, S.H. Tong and Y.Z. He, Mater. Sci. Eng. A 134 (1991) 867–871.

    Article  Google Scholar 

  29. A. Venskutonis, F. Aubertin and J. Breme, Hyp. Interact. 112 (1997) 161–164.

    Article  ADS  Google Scholar 

  30. J. Xu, G.S. Collins, L.S.J. Peng and M. Atzmon, Acta Mater. 47 (1999) 1241–1253.

    Article  Google Scholar 

  31. H. Bakker, G.F. Zhou and H. Yang, Progr. Mater. Sci. 39 (1995) 159–241.

    Article  Google Scholar 

  32. P. Eckerlin and H. Kandler, Strukturdaten der Elemente und intermetallischen Phasen, Landolt-Börnstein, Zahlenwerte und Funktionen aus Naturwissenschaft und Technik, Neue Serie, Bd. III/6 (Springer Verlag, Berlin, 1971).

    Google Scholar 

  33. J. Chappert, J.M.D. Coey, A. Liénard and J.P. Rebouillat, J. Phys. F 11 (1981) 2727–2744.

    Article  ADS  Google Scholar 

  34. B.D. Sawicka and J.A. Sawicki, Nucl. Instr. Meth. 209/210 (1983) 799–816.

    Google Scholar 

  35. S. Nasu, U. Gonser and R.S. Preston, J. Phys. Colloq. 41–C1 (1980) 385–386.

    Google Scholar 

  36. H. Bakker, Enthalpies in Alloys, Materials Science Foundations, Vol. 1 (Trans. Tech. Publ., Uetikon, 1998).

    Google Scholar 

  37. V.N. Kaigorodov, S.M. Klotsman and S.N. Shlyapnikov, Phys. Rev. B 49 (1994) 9387–9394.

    Article  ADS  Google Scholar 

  38. T. Ozawa and S. Ishida, J. Phys. Colloq. 40–C2 (1979) 551–552.

    Google Scholar 

  39. S. Ramasamy, J. Jiang, H. Gleiter, R. Birringer and U. Gonser, Solid State Commun. 74 (1990) 851–855.

    Article  ADS  Google Scholar 

  40. B. Fultz, H. Kuwano and H. Ouyang, J. Appl. Phys. 77 (1995) 3458–3466.

    Article  ADS  Google Scholar 

  41. E.D. Hondros and M.P. Seah, Int. Metals Reviews 22 (1977) 263–301; R. Kirchheim, in: Materials Interfaces, Atomic Level Structure and Properties, eds. D. Wolf and S. Yip (Chapman and Hall, London, 1992) pp. 482–496.

    Google Scholar 

  42. E. Kuzman, E. Bene, L. Domonkos, Z. Hegedüs, S. Nagy and A. Vertes, J. Phys. Colloq. 37–C6 (1976) 409–414.

    Google Scholar 

  43. A.P. Kuprin and I.G. Murzin, Nucl. Instr. Meth. B 76 (1993) 218–220.

    Article  ADS  Google Scholar 

  44. A.M. van der Kraan and K.H.J. Buschow, Phys. B 138 (1986) 55–62.

    Google Scholar 

  45. D.C. Price, Austr. J. Phys. 34 (1981) 51–56.

    ADS  Google Scholar 

  46. B.D. Sawicka and J.A. Sawicki, J. Phys. Colloq. 40–C2 (1979) 576–578.

    Google Scholar 

  47. D.M. Wahl, W. Mansel and J. Marangos, J. Phys. F 18 (1988) L75–L81.

    Article  ADS  Google Scholar 

  48. H.E. Schaefer, R. Würschum, R. Birringer and H. Gleiter, Phys. Rev. B 38 (1988) 9445–9455.

    Article  Google Scholar 

  49. B. Kolk, in: Dynamical Properties of Solids, Vol. 5, eds. G.K. Horton and A.A. Maradudin (North-Holland, Amsterdam, 1984) pp. 5–328.

    Google Scholar 

  50. R.H. Herber, in: Chemical Mössbauer Spectroscopy, ed. R.H. Herber (Plenum, New York, 1984) pp. 199–216.

    Google Scholar 

  51. I. Alber, J.L. Bassani, M. Kantha, V. Vitek and G.J. Wang, Phil. Trans. Roy. Soc. London Ser. A 339 (1992) 555–586.

    ADS  Google Scholar 

  52. J.W. Burton and R.P. Goodwin, Phys. Rev. 158 (1967) 218–224.

    Article  ADS  Google Scholar 

  53. A.P. Sutton and R.W. Baluffi, Interfaces in Crystalline Materials (Oxford University Press, Oxford, 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rixecker, G. Mössbauer spectroscopic studies of defect structure and alloying effects in nanostructured materials. Hyperfine Interactions 130, 127–150 (2000). https://doi.org/10.1023/A:1011032519645

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011032519645

Keywords

Navigation