Skip to main content
Log in

Grazing-angle scattering of electromagnetic waves in periodic Bragg arrays

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A new powerful approximate approach for the theoretical analysis of Bragg scattering in oblique strip-like periodic arrays with the scattered wave propagating almost parallel to the array boundaries – grazing-angle scattering (GAS) – is introduced and justified. This approach is based on allowance for the diffractional divergence of the scattered wave by means of the parabolic equation of diffraction and Fourier analysis. The divergence is demonstrated to be an intrinsic physical cause of GAS. Detailed theoretical analysis of steady-state GAS is carried out for bulk and guided optical modes. It is demonstrated that the most interesting feature of GAS in arrays of width that is greater than a critical width is a unique combination of two strong simultaneous resonances with respect to frequency and angle of scattering. In such wide arrays, GAS is demonstrated to be not only unusually sensitive to angle of scattering, but also to small variations of array width and grating amplitude. Entire concentration of the resonantly strong scattered wave inside the array is shown to be possible. A relationship between GAS, conventional Bragg scattering, and extremely asymmetrical scattering (i.e. where the scattered wave propagates parallel to the array boundaries) is analysed. Applicability conditions for the used approximations and obtained results are derived and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreev, A.V. Sov. Phys.-Usp. 28 70, 1985 (and references therein).

    Google Scholar 

  • Agranovich, V.M. and D.L. Mills (eds) Surface Polaritons. Electromagnetic Waves at Surfaces and Interfaces, North Holland, Amsterdam, 1982.

  • Akhmanov, S.A., V.I. Emel'yanov, N.I. Koroteev and V.N. Seminogov. Sov.-Phys. Uspekhi 28 1084, 1985.

    Google Scholar 

  • Bakhturin, M.P, L.A. Chernozatonskii and D.K. Gramotnev. Appl. Opt. 34 2692, 1995.

    Google Scholar 

  • Bedynska, T. Phys. status solidi (a) 19 365, 1973.

    Google Scholar 

  • Bedynska, T. Phys. status solidi (a) 25 405, 1974.

    Google Scholar 

  • Chateau, N. and J.P. Hugonin. J. Opt. Soc. Am. A11 1321, 1994.

    Google Scholar 

  • Chu R.S. and J.A. Kong. IEEE Trans. Microwave Theory Tech., MTT-25 18, 1977.

    Google Scholar 

  • Elachi, C. Proc. IEEE 64 1666, 1976.

    Google Scholar 

  • Emel'yanov, V.I., V.I. Konov, V.N. Tokarev and V.N. Seminogov. J. Opt. Soc. Am. B6 104, 1993.

    Google Scholar 

  • Gaylord T.K. and M.G. Moharam, IEEE Proc. 73 894, 1985.

    Google Scholar 

  • Glytsis, E.N. and T.K. Gaylord. J. Opt. Soc. Am. A4 2061, 1987.

    Google Scholar 

  • Gramotnev, D.K. Phys. Letters A, 200 184, 1995.

    Google Scholar 

  • Gramotnev, D.K. J. Physics D, 30 2056, 1997a.

    Google Scholar 

  • Gramotnev, D.K. Optics Letters, 22 1053, 1997b.

    Google Scholar 

  • Gramotnev, D.K. and T.A. Nieminen. J. Optics A: Pure and Applied Optics, 1 635, 1999.

    Google Scholar 

  • Gramotnev, D.K. and D.F.P. Pile. Applied Optics, 38 2440, 1999a.

    Google Scholar 

  • Gramotnev, D.K. and D.F.P. Pile. Phys. Letters A 253 309, 1999b.

    Google Scholar 

  • Gramotnev D.K. and D.F.P. Pile. Opt. Quant. Electron. 32 1097, 2000.

    Google Scholar 

  • Hall, D.G. Optics Letters 15 619, 1990.

    Google Scholar 

  • Hutley, M.C. Diffraction Gratings, Academic Press, London, 1982.

    Google Scholar 

  • Jarem, J.M. and P.P. Banerjee. J. Opt. Soc. Am. A16 1097, 1999.

    Google Scholar 

  • Kishino, S. J. Phys. Soc. Japan. 31 1168, 1971.

    Google Scholar 

  • Kishino, S., A. Noda and K. Kohra. J. Phys. Soc. Japan. 33 158, 1972.

    Google Scholar 

  • Kogelnik, H. Bell Syst.Tech. J. 48 2909, 1969.

    Google Scholar 

  • Kong, J.A. J. Opt. Soc. Am., 67 825, 1977.

    Google Scholar 

  • Loewen, E.G. and E. Popov. Diffraction Gratings and Applications, M. Dekker, New York, 1997.

    Google Scholar 

  • Moharam, M.G. and T.K. Gaylord. Applied Physics B28 1, 1982.

    Google Scholar 

  • Nieminen T.A. and D.K. Gramotnev. Optics Commun. (submitted), 2001.

  • Petit, R. (<nt>ed</nt>) Electromagnetic Theory of Gratings, Springer-Verlag, Berlin, 1980.

    Google Scholar 

  • Popov, E. and L. Mashev. Opt. Acta 32 265, 1985.

    Google Scholar 

  • Popov, E., L. Mashev and D. Maystre. Opt. Acta 33 607, 1986.

    Google Scholar 

  • Russell, P.St.J. Phys. Rep. 71 209, 1981.

    Google Scholar 

  • Seminogov, V.N. and A.I. Khudobenko. Sov.-Phys. JETP 69 284, 1989.

    Google Scholar 

  • Stegeman, G.I., D. Sarid, J.J. Burke and D.G. Hall. J. Opt. Soc. Am. 71 1497, 1981.

    Google Scholar 

  • Weller-Brophy, L.A. and D.G. Hall. J. Lightwave Technol. 6 1069, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gramotnev, D. Grazing-angle scattering of electromagnetic waves in periodic Bragg arrays. Optical and Quantum Electronics 33, 253–288 (2001). https://doi.org/10.1023/A:1011011910257

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011011910257

Navigation