Skip to main content
Log in

Assessment of Tear Concentrations on Therapeutic Drug Monitoring. II. Pharmacokinetic Analysis of Valproic Acid in Guinea Pig Serum, Cerebrospinal Fluid, and Tears

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To quantitatively describe the pharmacokinetics of valproic acid (VPA) in guinea pig serum (total [Cf+b] and free [Cf]), cerebrospinal fluid (CSF) [C]CSF and tears [C]T using a simple kinetic model, and to examine whether [Cf] and [C]CSF can be predicted by [C]T using the resulting pharmacokinetic parameters.

Methods. [Cf+b], [Cf], [C]CSF and [C]T were determined after bolus i.v. injection of 10 or 20 mg/kg VPA using GC/ECNCI/MS.

Results. [Cf+b] could be quantitatively described by a two compartment model with linear elimination kinetics. [Cf] was separately analyzed using multi-exponential equations. [C]CSF was analyzed using a simple kinetic model in which the CSF compartment is independently connected with the serum compartment by the apparent diffusion constants (K INCSF and K OUTCSF). [C]T was analyzed using the same simple kinetic model used for [C]CSF. The values of [C]CSF and [Cf] in the steady state can be represented by the following equations; [C]CSF = K INCSF/K OUTCSF × [Cf], [Cf] = K OUTT/K INT × [C]T, and indicating that [Cf] and [C]CSF can be predicted by [C]T using the resulting pharmacokinetic parameters.

Conclusions. The measurement of [C]T which can be collected non-invasively and estimated the pharmacokinetic parameters for [Cf], [C]CSF, and [C]T might be a very useful method for TDM of VPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. L. O. Semmes and D. D. Shen. Nonlinear binding of valproic acid (VPA) and E-Δ2-valproic aid to rat plasma proteins. Pharm. Res. 7:461-467 (1990).

    Google Scholar 

  2. P. L. Morselli. Development of physiological variables important for drug kinetics. In P. L. Morselli, C. E. Pippenger, J. K. Penry (eds.), Antiepileptic Drug Therapy in Pediatrics, Raven Press, New York 1983 pp. 1-12.

    Google Scholar 

  3. R. Gugler and G. Mueller. Plasma protein binding of valproic acid in healthy subjects and in patients with renal disease. Br. J. Clin. Pharmacol. 5:441-446 (1978).

    Google Scholar 

  4. M. Nakajima, S. Yamato, K. Shimada, S. Sato, S. Kitagawa, A. Honda, J. Miyamoto, J. Shoda, M. Ohya, and H. Miyazaki. Assessment of tear concentrations on therapeutic drug monitoring. I. Determination of valproic acid in tears by gas chromatography/mass spectrometry with EC/NCI mode. Ther. Drug. Monit. 22:716-722 (2000).

    Google Scholar 

  5. F. Monaco, S. Piredda, R. Mutani, C. Mastropaolo, and M. Tondi. The free fraction of valproic acid in tears, saliva, and cerebrospinal fluid. Epilepsia 23:23-26 (1982).

    Google Scholar 

  6. W. Loscher and H.-H. Frey. Kinetics of penetration of common antiepileptic drugs into cerebrospinal fluid. Epilepsia 25:346-352 (1984).

    Google Scholar 

  7. R. D. Schoenwald, Y-S Yang, E. Xia, and C. F. Barfknecht. Uptake of N,N-dimethyl-2-phenylethylene HCl into acini cells removed from rabbit lacrimal glands. J. Ocular Pharmacol. Ther. 14:253-262 (1998).

    Google Scholar 

  8. Y. Horibe, K. Hosoya, K-J. Kim, and V. H. L. Lee. Carrier-mediated transport of monocarboxylate drugs in the pigmented rabbit conjunctiva. Invest. Ophthalmol. Vis. Sci. 39:1436-1443 (1998).

    Google Scholar 

  9. S. Sato and A. Koshiro. Pharmacokinetic analysis of chlorpromazine in rat serum, cerebrospinal fluid and striatum. Biol. Pharm. Bull. 18:593-599 (1995).

    Google Scholar 

  10. M. Berman, E. Shahn, and M. F. Weiss. The routine fitting of kinetic data to models: A mathematical formalism for digital computers. Biophys. J. 2:275-287 (1962).

    Google Scholar 

  11. J. H. Zar. Biostatistical Analysis 2nd Ed, Prentice-Hall Inc., New Jersey, 1984.

    Google Scholar 

  12. H-Y. Yu and Y-Z. Shen. Dose-dependent inhibition in plasma protein binding of valproic acid during continued treatment in guinea pigs. J. Pharm. Pharmacol. 44:408-412 (1992).

    Google Scholar 

  13. S. Sato and A. Koshiro. Protein binding of chlorpromazine in vivo and in vitro: Effect of chlorpromazine metabolite on chlorpromazine protein binding in rat. Biol. Pharm. Bull. 18:586-892 (1995).

    Google Scholar 

  14. H. Sato, E. Okezaki, S. Yamamoto, O. Nagata, H. Kato, and A. Tsuji. Entry of the new quinolone antibacterial agents of ofloxacin and NY-198 into the central nervous system in rats. J. Pharmacobio-Dyn. 11:386-394 (1988).

    Google Scholar 

  15. J. M. Collins and R. L. Dedrick. Distributed model for drug delivery to CSF and brain tissue. Am. J. Physiol. 245:R303-R310 (1983).

    Google Scholar 

  16. P. L. Golden, K. R. Brouwer, and G. M. Pollack. Assessment of valproic acid serum-cerebrospinal fluid transport by microdialysis. Pharm. Res. 10:1765-1771 (1993).

    Google Scholar 

  17. G. M. Pollack and D. D. Shen. A timed intravenous pentylenetetrazol infusion seizure model for quantitating the anticonvulsant effect of valproic acid in the rat. J. Pharmacol. Meth. 13:135-146 (1985).

    Google Scholar 

  18. H. H. Frey and W. Loscher. Distribution of valproate across the interface between blood and cerebrospinal fluid. Pharmacology 17:637-642 (1978).

    Google Scholar 

  19. A. Lucke, T. Mayer, U. Altrup, A. Lehmenkuhler, R. Dusing, and E.-J. Speckmann. Simultaneous and continuous measurement of free concentration of valproate in blood and extracellular space of rat cerebral cortex. Epilepsia 35:922-926 (1994).

    Google Scholar 

  20. D. D. Shen, G. A. Ojemann, R. L. Rapport, R. L. Dills, P. N. Friel, and R. H. Levy. Low and variable presence of valproic acid in human brain. Neurology 42:582-585 (1992).

    Google Scholar 

  21. E. M. Conford, C. P. Diep, and W. M. Pardridge. Blood-brain barrier transport of valproic acid. J. Neurochem. 44:1541-1550 (1985).

    Google Scholar 

  22. S. S. Chrai, T. F. Patton, A. Mehta, and J. R. Robinson. Lacrimal and instilled fluid dynamics in rabbit eyes. J. Pharm. Sci. 62:1112-1121 (1973).

    Google Scholar 

  23. J. C. Keister, E. R. Cooper, P. J. Missel, J. C. Lang, and D. F. Hager. Limits on optimizing ocular drug delivery. J. Pharm. Sci. 80:50-53 (1991).

    Google Scholar 

  24. A. Shimizu, N. Yokoi, K. Nishida, S. Kinoshita, and K. Akiyama. Fluorophotometric measurement of tear volume and tear turnover rate in human eyes. J. Jpn. Ophthalmol. Soc. 97:1047-1052 (1993).

    Google Scholar 

  25. N. J. van Haeringen. Secretion of drugs in tears. Curr. Eye. Res. 4:485-488 (1985).

    Google Scholar 

  26. V. Baeyens and R. Gurny. Chemical and physical parameters of tears relevant for the design of ocular drug delivery formulations. Pharmaceutica Acta Helvetiae. 72:191-202 (1997).

    Google Scholar 

  27. A. K. Mircheff. Lacrimal fluid and electrolyte secretion: A review. Curr. Eye. Res. 8:607-617 (1989).

    Google Scholar 

  28. D. A. Dartt, M. Moller, and J. H. Poulsen. Lacrimal gland electrolyte and water secretion in the rabbit: localization and role of (Na+ + K+)-activate ATPase. J. Physiol. Lond. 321:557-569 (1981).

    Google Scholar 

  29. A. K. Mitra and T. J. Mikkelson. Mechanism of transcorneal permeation of pilocarpine. J. Pharm. Sci. 77:771-775 (1988).

    Google Scholar 

  30. S. W. Friedrich, Y-L Cheng, and B. A. Saville. Theoretical corneal permeation model for ionizable drugs. J. Ocul. Pharmacol. 9:229-249 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, S., Kitagawa, S., Nakajima, M. et al. Assessment of Tear Concentrations on Therapeutic Drug Monitoring. II. Pharmacokinetic Analysis of Valproic Acid in Guinea Pig Serum, Cerebrospinal Fluid, and Tears. Pharm Res 18, 500–509 (2001). https://doi.org/10.1023/A:1011010528642

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011010528642

Navigation