Skip to main content
Log in

Topological Invariants in Braid Theory

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Many invariants of knots and links have their counterparts in braid theory. Often, these invariants are most easily calculated using braids. A braid is a set of n strings stretching between two parallel planes. This review demonstrates how integrals over the braid path can yield topological invariants. The simplest such invariant is the winding number – the net number of times two strings in a braid wrap about each other. But other, higher-order invariants exist. The mathematical literature on these invariants usually employs techniques from algebraic topology that may be unfamiliar to physicists and mathematicians in other disciplines. The primary goal of this paper is to introduce higher-order invariants using only elementary differential geometry.

Some of the higher-order quantities can be found directly by searching for closed one-forms. However, the Kontsevich integral provides a more general route. This integral gives a formal sum of all finite order topological invariants. We describe the Kontsevich integral, and prove that it is invariant to deformations of the braid.

Some of the higher-order invariants can be used to generate Hamiltonian dynamics of n particles in the plane. The invariants are expressed as complex numbers; but only the real part gives interesting topological information. Rather than ignoring the imaginary part, we can use it as a Hamiltonian. For n = 2, this will be the Hamiltonian for point vortex motion in the plane. The Hamiltonian for n = 3 generates more complicated motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aref, H., Rott, N. and Thomann, H.: Gröbli's solution of the three vortex problem, Ann. Rev. Fluid. Mech. 24 (1992), 1.

    Google Scholar 

  2. Arnol'd, V. I.: The cohomology ring of the coloured braid group, Math. Notes Acad. Sci. USSR 5 (1969), 227 (Math. Notes 5 (1974), 138).

    Google Scholar 

  3. Bar-Natan, D.: Bibliography of Vassiliev invariants, 2000, www.ma.huji.ac.il.drorbn.

  4. Berger, M. A.: Third-order link integrals, J. Phys. A: Math. Gen. 23 (1990), 2787.

    Google Scholar 

  5. Berger, M. A.: Third-order braid invariants, J. Phys. A: Math. Gen. 24 (1991), 4027.

    Google Scholar 

  6. Berger, M. A.: Minimum crossing numbers for three-braids, J. Phys. A: Math. Gen. 27 (1994), 6205.

    Google Scholar 

  7. Berger, M. A.: Hamiltonian dynamics generated by Vassiliev invariants, J. Phys. A: Math. Gen. 34 (2001), 1363.

    Google Scholar 

  8. Birman, J. S.: Braids, Links, and Mapping Class Groups, Princeton Univ. Press, Princeton, NJ, 1974.

    Google Scholar 

  9. Birman J. S. and Lin, X. S.: Knot polynomials and Vassiliev's invariants, Invent. Math. 111 (1993), 225.

    Google Scholar 

  10. Boyland P. L., Aref, H. and Stremler, M. A.: Topological fluid mechanics of stirring, J. Fluid Mech. 403 (2000), 277.

    Google Scholar 

  11. Chen, K. T.: Iterated path integrals, Bull. Amer. Math. Soc. 83 (1997), 831.

    Google Scholar 

  12. Clausen, S., Helgesen, G. and Skjeltorp, A. T.: Braid description of collective fluctuations in a few-body system, Phys. Rev. E 58 (1998), 4229.

    Google Scholar 

  13. Cromwell, P., Beltrami, E. and Rampichini, M.: The Borromean rings, Math. Intelligencer 20 (1998), 53.

    Google Scholar 

  14. Chmutov, S. and Duzhin, S.: The Kontsevich integral, Act. Appl. Math. 66(2) (2001), 139–154.

    Google Scholar 

  15. Evans, W. N. and Berger, M. A.: A hierarchy of linking integrals, In: H. K. Moffatt, G. M. Zaslavsky, P. Comte and M. Tabor (eds), Topological Aspects of the Dynamics of Fluids and Plasmas, Santa Barbara, NATO ASI Proc. 237, Kluwer Acad. Publ., Dordrecht, 1992.

    Google Scholar 

  16. Fenn, R. A.: Techniques of Geometric Topology, London Math. Soc. Lecture Note Ser. 57, Cambridge Univ. Press, Cambridge, 1983.

    Google Scholar 

  17. Kontsevich, M.: Vassiliev's knot invariants, Adv. Soviet Math. 16 (1993), 137.

    Google Scholar 

  18. Laurence, P. and Stredulinsky, E.: Asymptotic Massey products, induced currents and Borromean torus links, J. Math. Phys. 41 (2000), 3170.

    Google Scholar 

  19. Monastrysky, M. I. and Retakh, V.: Topology of linked defects in condensed matter, Comm. Math. Phys. 103 (1986), 445.

    Google Scholar 

  20. Monastrysky, M. I. and Sasarov, P. V.: Topological invariants in magnetic hydrodynamics, Soviet Phys. JETP 93 (1987), 1210.

    Google Scholar 

  21. Moore, C.: Braids in classical dynamics, Phys. Rev. Lett. 70 (1993), 3675.

    Google Scholar 

  22. Ruzmaikin, A. and Akhmetiev, P.: Topological invariants of magnetic fields, and the effect of reconnections, Phys. Plasmas 1 (1994), 331.

    Google Scholar 

  23. Vassiliev, V. A.: Cohomology of knot spaces, Adv. Soviet Math. 1 (1990), 23.

    Google Scholar 

  24. Willerton, S.: PhD Thesis, University of Edinburgh, 1997.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, M.A. Topological Invariants in Braid Theory. Letters in Mathematical Physics 55, 181–192 (2001). https://doi.org/10.1023/A:1010979823190

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010979823190

Navigation