Skip to main content
Log in

Interactions Between Oligonucleotides and Cationic Polymers Investigated by fluorescence Correlation Spectroscopy

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To evaluate whether fluorescence correlation spectroscopy (FCS) can be used to characterize the complexation between oligonucleotides and cationic polymers.

Methods. The features of the complexes between rhodamine labeled oligonucleotides (Rh-ONs) and poly(2-dimethylamino)ethyl methacrylate (pDMAEMA), poly(ethylene glycol)-poly(ethyleneimine) (pEG-pEI), and diaminobutane-dendrimer-(NH2)64 (DAB64) were characterized by light scattering, electrophoretic mobility, electrophoresis, and FCS.

Results. At low polymer/Rh-ON ratios, a decrease of the fluorescence of the Rh-ONs was observed on binding of the Rh-ONs to all cationic polymers. This was explained by the creation of “multimolecular complexes” in which the Rh-labels quench each other. The multimolecular complexes, which are highly fluorescent as they carry a number of Rh-ONs, resulted in high fluorescence peaks in the fluorescence fluctuation profile as measured by FCS. For pDMAEMA and DAB64, at higher polymer/Rh-ON ratios the fluorescence of the polyplexes increased, caused by the formation of “monomolecular complexes,” which consist of only one Rh-ON per polymer. In the case of pEG-pEI, the fluorescence stayed constant when the polymer/Rh-ON ratio increased, so multimolecular polyplexes remained. FCS confirmed these results as the high fluorescence peaks disappeared in case of pDMAEMA/Rh-ON and DAB64/Rh-ON dispersions, but remained present for pEG-pEI/Rh-ON dispersions.

Conclusions. FCS seems applicable for study of the interactions between ONs and different types of cationic polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. A. Stein and Y. C. Cheng. Antisense oligonucleotides as therapeutic agents—Is the bullet really magical? Science 261:1004-1012 (1993).

    Google Scholar 

  2. A. V. Kabanov, S. V. Vinogradov, Y. G. Suzdaltseva, and V. Y. Alakhov. Water-soluble block polycations as carriers for oligonucleotide delivery. Bioconjugate Chem. 6:639-643 (1995).

    Google Scholar 

  3. P. L. Felgner, Y. Barenholz, J. P. Behr, et al. Nomenclature for synthetic gene delivery systems. Hum. Gene Ther. 8:511-512 (1997).

    Google Scholar 

  4. S. V. Vinogradov, T. K. Bronich, and A. V. Kabanov. Self-assembly of polyamine-poly(ethylene glycol) copolymers with phosphorothioate oligonucleotides. Bioconjugate Chem. 9:805-812 (1998).

    Google Scholar 

  5. E. Van Rompaey, Y. Chen, J. D. Muller, E. Gratton, E. Van-Craenenbroeck, Y. Engelborghs, S. De Smedt, and J. Demeester. Fluorescence fluctuation analysis for the study of interactions between oligonucleotides and polycationic polymers. Biol. Chem. 382:379-386 (2001).

    Google Scholar 

  6. E. Van Rompaey, N. Sanders, S. De Smedt, E. Van Craenenbroeck, Y. Engelborghs, and J. Demeester. On the complex formation between cationic polymethacrylates and oligonucleotides. Macromolecules 33:8280-8288 (2000).

    Google Scholar 

  7. R. Brock, M. A. Hink, and T. M. Jovin. Fluorescence correlation microscopy of cells in the presence of autofluorescence. Biophys. J. 75:2547-2557 (1998).

    Google Scholar 

  8. P. van de Wetering, J. Y. Cherng, H. Talsma, and W. E. Hennink. Relation between transfection efficiency and cytotoxicity of poly(2-(dimethylamino)ethyl methacrylate)/plasmid complexes. J. Control. Release 49:59-69 (1997).

    Google Scholar 

  9. J. Y. Cherng, H. Talsma, R. Verrijk, D. J. Crommelin, and W. E. Hennink. The effect of formulation parameters on the size of poly-((2-dimethylamino)ethyl methacrylate)-plasmid complexes. Eur. J. Pharm. Biopharm. 47:215-224 (1999).

    Google Scholar 

  10. A. W. Bosman, H. M. Janssen, and E. W. Meijer. About dendrimers: Structure, physical properties, and applications. Chem. Rev. 99:1665-1688 (1999).

    Google Scholar 

  11. P. van de Wetering, E. E. Moret, N. N. Schuurmans, M. J. van Steenbergen, and W. E. Hennink. Structure-activity relationship of water-soluble cationic methacrylate/methacrylamide polymers for nonviral gene delivery. Bioconjugate Chem. 10:589-597 (1999).

    Google Scholar 

  12. G. J. M. Koper, M. H. P. vanGenderen, C. ElissenRoman, M. W. P. L. Baars, E. W. Meijer, and M. Borkovec. Protonation mechanism of poly(propylene imine) dendrimers and some associated oligo amines. J. Am. Chem. Soc. 119:6512-652 (1997).

    Google Scholar 

  13. J. C. Hummelen, J. L. J. van Dongen, and E. W. Meijer. Electrospray mass spectrometry of poly(propylene imine) dendrimers—The issue of dendritic purity or polydispersity. Chem. Eur. J. 3:1489-1493 (1997).

    Google Scholar 

  14. B. Rauer, E. Neumann, J. Widengren, and R. Rigler. Fluorescence correlation spectrometry of the interaction kinetics of tetramethylrhodamin alpha-bungarotoxin with Torpedo californica acetylcholine receptor. Biophys. Chem. 58:3-12 (1996).

    Google Scholar 

  15. E. L. Elson, and D. Magde. Fluorescence correlation spectroscopy: I. Conceptual basis and theory. Biopolymers 13:1-27 (1974).

    Google Scholar 

  16. S. Katayose and K. Kataoka. Water-soluble polyion complex associates of DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer. Bioconjugate Chem. 8:702-707 (1997).

    Google Scholar 

  17. H. K. Nguyen, P. Lemieux, S. V. Vinogradov, C. L. Gebhart, N. Guerin, G. Paradis, T. K. Bronich, V. Y. Alakhov, and A. V. Kabanov. Evaluation of polyether-polyethyleneimine graft copolymers as gene transfer agents. Gene Ther. 7:126-138 (2000).

    Google Scholar 

  18. L. J. Kukowska, A. U. Bielinska, J. Johnson, R. Spindler, D. A. Tomalia, and J. Baker, Jr. Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc. Natl. Acad. Sci. U.S.A. 93:4897-4902 (1996).

    Google Scholar 

  19. P. Schwille, U. Haupts, S. Maiti, and M. W. Webb. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one-and two-photon excitation. Biophys. J. 77:2251-2265 (1999).

    Google Scholar 

  20. J. C. Politz, E. S. Browne, D. E. Wolf, and T. Pederson. Intranuclear diffusion and hybridization state of oligonucleotides measured by fluorescence correlation spectroscopy in living cells. Proc. Natl. Acad. Sci. U.S.A. 95:6043-6048 (1998).

    Google Scholar 

  21. E. Van Craenenbroeck, G. Matthys, G. Bierlant, and Y. Engelborghs. A statistical analysis of fluorescence correlation data. J. Fluorescence 9:325-331 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Rompaey, E., Engelborghs, Y., Sanders, N. et al. Interactions Between Oligonucleotides and Cationic Polymers Investigated by fluorescence Correlation Spectroscopy. Pharm Res 18, 928–936 (2001). https://doi.org/10.1023/A:1010975908915

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010975908915

Navigation