, Volume 25, Issue 4, pp 223–232 | Cite as

Induction of Nitric Oxide Synthesis by Probiotic Lactobacillus rhamnosus GG in J774 Macrophages and Human T84 Intestinal Epithelial Cells

  • Riku Korhonen
  • Riitta Korpela
  • Maija Saxelin
  • Markku Mäki
  • Hannu Kankaanranta
  • Eeva Moilanen


Backgrounds and Aims: Probiotic Lactobacillus rhamnosus GG (LGG) has proved to be beneficial in the treatment of viral- and antibiotic-associated diarrhea but the mechanisms of action remain unknown. Nitric oxide (NO) is involved in the protective mechanisms in the gastrointestinal tract and may contribute to some of the beneficial effects of probiotics. The aim of the present study was to investigate if induction of NO synthesis is involved in the cellular actions of LGG.

Methods: NO synthesis and its regulation were measured in cultures of J774 murine macrophages and human T84 colon epithelial cells. NO production was measured as its metabolite nitrite accumulated into the culture medium. Inducible nitric oxide synthase (iNOS) protein and iNOS mRNA were detected by Western blot and RT-PCR, respectively.

Results: In J774 macrophages, LGG induced a low level production of NO in the presence of gamma interferon (IFNγ) and it was inhibited by NOS inhibitors, cycloheximide and by a NF-kappa B inhibitor pyrrolidinedithiocarbamate. Accordingly, LGG and IFNγ-stimulation increased iNOS mRNA and protein levels. T84 cells produced NO in response to LGG when first primed with a combination of IL-1β, TNFα and IFNγ. Lipoteichoic acid (LA), an antigenic structure in gram-positive bacteria, also induced NO formation in J774 cells in the presence of IFNγ suggesting that LA may be the active component in LGG.

Conclusions: LGG induces NO production in J774 macrophages and in human T84 colon epithelial cells through induction of iNOS by a mechanism involving activation of transcription factor NF-κB. Induction of iNOS and low-level synthesis of NO may be involved in the protective actions of LGG in the gastrointestinal tract.

inflammation inducible nitric oxide synthase iNOS Gram positive bacteria probiotics intestine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alander, M., R. Korpela, M. Saxelin, T. Vilpponen-Salmela, T. Mattila-Sandholm, and A. Von Wright. 1997. Recovery of Lactobacillus rhamnosus GG from human colonic biopsies. Lett. Appl. Microbiol. 24:361–364.Google Scholar
  2. 2.
    Alican, I., and P. Kubes. 1996. A critical role for nitric oxide in intestinal barrier function and dysfunction. Am. J. Physiol. 270:G225–G237.Google Scholar
  3. 3.
    Biller, J. A., A. J. Katz, A. F. Flores, T. M. Buie, and S. L. Gorbach. 1995. Treatment of recurrent Clostridium difficile colitis with Lactobacillus GG. J. Pediatr. Gastr. Nutr. 21:224–226.Google Scholar
  4. 4.
    Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.Google Scholar
  5. 5.
    Campieri, M., and P. Gionchetti. 1999. Probiotics in inflammatory bowel disease: new insight to pathogenesis or a possible therapeutic alternative? Gastroenterology 116:1246–1249.Google Scholar
  6. 6.
    Chen, B. C., C. F. Chou, and W. W. Lin. 1998. Pyrimidinoceptormediated potentiation of inducible nitric-oxide synthase induction in J774 macrophages. Role of intracellular calcium. J. Biol. Chem. 273:29754–29763.Google Scholar
  7. 7.
    Colgan, S. P. 1998. Nitric oxide and intestinal epithelia: just say NO. Gastroenterology 114: 601–603.Google Scholar
  8. 8.
    Conforti, A., M. Donini, G. Brocco, P. Del Soldato, G. Benoni, and L. Cuzzolin. 1993. Acute anti-inflammatory activity and gastrointestinal tolerability of diclofenac and nitrofenac. Agents Actions 40:176–180.Google Scholar
  9. 9.
    Fabia, R., A. Ar'Rajab, M. L. Johansson, R. Andersson, Willen, B. Jeppsson, G. Molin, and S. Bengmark. 1993. Impairment of bacterial flora in human ulcerative colitis and experimental colitis in the rat. Digestion 54:248–255.Google Scholar
  10. 10.
    Garvey, E. P., J. A. Oplinger, E. S. Furfine, R. J. Kiff, F. Laszlo, B. J. Whittle, and R. G. Knowles. 1997. 1400W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo. J. Biol. Chem. 272:4959–4963.Google Scholar
  11. 11.
    Gorbach, S. L. 1996. Efficacy of Lactobacillus in the treatment of acute diarrhea. Nutrition Today 31: S19–S23.Google Scholar
  12. 12.
    Gorbach, S. L., T. W. Chang, and B. Goldin. 1987. Successful treatment of relapsing Clostridium difficile colitis with Lactobacillus GG. Lancet 2:1519.Google Scholar
  13. 13.
    Green, L. C., D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok, and S. R. Tannenbaum. 1982. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 126:131–138.Google Scholar
  14. 14.
    Guarino, A., R. B. Canani, M. I. Spagnuolo, F. Albano, Di, and L. Benedetto. 1997. Oral bacterial therapy reduces the duration of symptoms and of viral excretion in children with mild diarrhea. J. Pediatr. Gastr. Nutr. 25:516–519.Google Scholar
  15. 15.
    Hattor, Y., K. Kasai, K. Akimoto, and C. Thiemermann. 1997. Induction of NO synthesis by lipoteichoic acid from Staphylococcus aureus in J774 macrophages: involvement of a CD14-dependent pathway. Biochem. Biophys. Res. Co. 233:375–379.Google Scholar
  16. 16.
    Hattori, Y., K. Kasai, N. Nakanishi, S. S. Gross, and C. Thiemermann. 1998. Induction of nitric oxide and tetrahydrobiopterin synthesis by lipoteichoic acid from Staphylococcus aureus in vascular smooth muscle cells. J. Vasc. Res. 35:104–108.Google Scholar
  17. 17.
    Hutcheson, I. R., B. J. Whittle, and N. K. Boughton-Smith. 1990. Role of nitric oxide in maintaining vascular integrity in endotoxininduced acute intestinal damage in the rat. Brit. J. Pharmacol. 101:815–820.Google Scholar
  18. 18.
    Isolauri, E., M. Juntunen, T. Rautanen, P. Sillanaukee, and T. Koivula. 1991. A human Lactobacillus strain (Lactobacillus casei sp strain GG) promotes recovery from acute diarrhea in children. Pediatrics 88:90–97.Google Scholar
  19. 19.
    Isolauri, E., H. Majamaa, T. Arvola, I. Rantala, E. Virtanen, and H. Arvilommi. 1993. Lactobacillus casei strain GG reverses increased intestinal permeability induced by cow milk in suckling rats. Gastroenterology 105:1643–1650.Google Scholar
  20. 20.
    Kaila, M., E. Isolauri, M. Saxelin, H. Arvilommi, and T. Vesikari. 1995. Viable versus inactivated lactobacillus strain GG in acute rotavirus diarrhoea. Arch. Dis. Child. 72:51–53.Google Scholar
  21. 21.
    Kaila, M., E. Isolauri, E. Soppi, E. Virtanen, S. Laine, and H Arvilommi. 1992. Enhancement of the circulating antibody secreting cell response in human diarrhea by a human Lactobacillus strain. Pediatr. Res. 32:141–144.Google Scholar
  22. 22.
    Kengatharan, M., S. J. De Kimpe, and C. Thiemermann. 1996. Analysis of the signal transduction in the induction of nitric oxide synthase by lipoteichoic acid in macrophages. Brit. J. Pharmacol. 117:1163–1170.Google Scholar
  23. 23.
    Kennedy, M., A. G. Denenberg, C. Szabo, and A. L. Salzman. 1998. Poly(ADP-ribose) synthetase activation mediates increased permeability induced by peroxynitrite in Caco-2BBe cells. Gastroenterology 114:510–518.Google Scholar
  24. 24.
    Kosonen, O., H. Kankaanranta, P. Vuorinen, and E. Moilanen. 1997. Inhibition of human lymphocyte proliferation by nitric oxide-releasing oxatriazole derivatives. Eur. J. Pharmacol. 337:55–61.Google Scholar
  25. 25.
    Kubes, P., S. Kanwar, X. F. Niu, and J. P. Gaboury. 1993. Nitric oxide synthesis inhibition induces leukocyte adhesion via superoxide and mast cells. FASEB J. 7:1293–1299.Google Scholar
  26. 26.
    Lahde, M., R. Korhonen, and E. Moilanen. 2000. Regulation of nitric oxide production in cultured human T84 intestinal epithelial cells by nuclear factor-kappa B-dependent induction of inducible nitric oxide synthase after exposure to bacterial endotoxin. Aliment. Pharmacol. Ther. 14:945–954.Google Scholar
  27. 27.
    Lefer, A. M., and D. J. Lefer. 1999. Nitric oxide. II. Nitric oxide protects in intestinal inflammation. Am. J. Physiol. 276:G572–G575.Google Scholar
  28. 28.
    Lyons, C. R., G. J. Orloff, and J. M. Cunningham. 1992. Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J. Biol. Chem. 267:6370–6374.Google Scholar
  29. 29.
    Mackendrick, W., M. Caplan, and W. Hsueh. 1993. Endogenous nitric oxide protects against platelet-activating factor-induced bowel injury in the rat. Pediatr. Res. 34:222–228.Google Scholar
  30. 30.
    Macmicking, J., Q. W. Xie, and C. Nathan. 1997. Nitric oxide and macrophage function. Ann. Rew. Immunol. 15:323-350.Google Scholar
  31. 31.
    Madsen, K. L., J. S. Doyle, L. D. Jewell, M. M. Tavernini, and R.N. Fedorak. 1999. Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology 116:1107–1114.Google Scholar
  32. 32.
    Mao, Y., S. Nobaek, B. Kasravi, D. Adawi, U. Stenram, Molin, and B. Jeppsson. 1996. The effects of Lactobacillus strains and oat fiber on methotrexate-induced enterocolitis in rats. Gastroenterology 111:334–344.Google Scholar
  33. 33.
    Masuda, E., S. Kawano, K. Nagano, S. Tsuji, Y. Takei, Tsujii, M. Oshita, T. Michida, I. Kobayashi, and A. Nakama. 1995. Endogenous nitric oxide modulates ethanol-induced gastric mucosal injury in rats. Gastroenterology 108:58–64.Google Scholar
  34. 34.
    McCafferty, D. M., J. S. Mudgett, M. G. Swain, and P. Kubes. 1997. Inducible nitric oxide synthase plays a critical role in resolving intestinal inflammation. Gastroenterology 112:1022–1027.Google Scholar
  35. 35.
    Miettinen, M., J. Vuopio-Varkila, and K. Varkila. 1996. Production of human tumor necrosis factor alpha, interleukin-6, and interleukin-10 is induced by lactic acid bacteria. Infect. Immun. 64:5403–5405.Google Scholar
  36. 36.
    Moilanen, E., T. Moilanen, R. Knowles, I. Charles, Y. Kadoya, N. Alsaffar, P. A. Revell, and S. Moncada. 1997. Nitric oxide synthase is expressed in human macrophages during foreign body inflammation. Am. J. Pathol. 150:881–887.Google Scholar
  37. 37.
    Moilanen, E., and H. Vapaatalo. 1995. Nitric oxide inflammation and immune response. Ann. Med. 27:359–367.Google Scholar
  38. 38.
    Moncada, S., and E. A. Higgs. 1995. Molecular mechanisms and therapeutic strategies related to nitric oxide. FASEB J. 9:1319–1330.Google Scholar
  39. 39.
    Pant, A. R., S. M. Graham, S. J. Allen, S. Harikul, A. Sabchareon, L. Cuevas, and C. A. Hart. 1996. Lactobacillus GG and acute diarrhoea in young children in the tropics. J. Trop. Pediatrics 42:162–165.Google Scholar
  40. 40.
    Paul, A., K. Doherty, and R. Plevin. 1997. Differential regulation by protein kinase C isoforms of nitric oxide synthase induction in RAW 264.7 macrophages and rat aortic smooth muscle cells. Br. J. Pharmacol. 120:940–946.Google Scholar
  41. 41.
    Payne, D., and P. Kubes. 1993. Nitric oxide donors reduce the rise in reperfusion-induced intestinal mucosal permeability. Am. J. Physiol. 265:G189–G195.Google Scholar
  42. 42.
    Perdigon, G., M. E. De Macias, S. Alvarez, G. Oliver, R. De, and A. P. Holgado. 1988. Systemic augmentation of the immune response in mice by feeding fermented milks with Lactobacillus casei and Lactobacillus acidophilus. Immunology 63:17–23.Google Scholar
  43. 43.
    Rachmilewitz, D., J. S. Stamler, D. Bachwich, F. Karmeli, Z. Ackerman, and D. K. Podolsky. 1995. Enhanced colonic nitric oxide generation and nitric oxide synthase activity in ulcerative colitis and Crohn's disease. Gut 36:718–723.Google Scholar
  44. 44.
    Rautanen, T., E. Isolauri, E. Salo, and T. Vesikari. 1998. Management of acute diarrhoea with low osmolarity oral rehydration solutions and Lactobacillus strain GG. Arch. Dis. Child. 79:157–160.Google Scholar
  45. 45.
    Salvemini, D., E. Masini, A. Pistelli, P. F. Mannaionni, and J. Vane. 1991. Nitric oxide: A regulatory mediator of mast cell reactivity. J. Cardiovasc. Pharm. 17:S258–S264.Google Scholar
  46. 46.
    Saxelin, M., M. Elo, S. Salminen, and H. Vapaatalo. 1991. Dose response colonisation of faeces after oral administration of Lactobacillus casei strain GG. Microb. Ecol. Health Dis. 4:209-214.Google Scholar
  47. 47.
    Sheen, P., R. A. Oberhelman, R. H. Gilman, L. Cabrera, Verastegui, and G. Madico. 1995. Short report: a placebo-controlled study of Lactobacillus GG colonization in one-to-threeyear-old Peruvian children. Am. J. Trop. Med. Hyg. 52:389–392.Google Scholar
  48. 48.
    Shornikova, A. V., E. Isolauri, L. Burkanova, S. Lukovnikova, and T. Vesikari. 1997. A trial in the Karelian Republic of oral rehydration and Lactobacillus GG for treatment of acute diarrhoea. Acta Paediatr. 86:460–465.Google Scholar
  49. 49.
    Silva, M., N. V. Jacobus, C. Deneke, and S. L. Gorbach. 1987. Antimicrobial substance from a human Lactobacillus strain. Antimicrob. Agents Chemother. 31:1231–1233.Google Scholar
  50. 50.
    Simon, G. L., and S. L. Gorbach. 1986. The human intestinal microflora. Dic. Dis. Sci. 31:147S–162S.Google Scholar
  51. 51.
    Singer, I. I., D. W. Kawka, S. Scott, J. R. Weidner, R. A. Mumford, T. E. Riehl, and W. F. Stenson. 1996. Expression of inducible nitric oxide synthase and nitrotyrosine in colonic epithelium in inflammatory bowel disease. Gastroenterology 111:871–885.Google Scholar
  52. 52.
    Tepperman, B. L., and B. J. Whittle. 1992. Endogenous nitric oxide and sensory neuropeptides interact in the modulation of the rat gastric microcirculation. Brit. J. Pharmacol. 105: 171–175.Google Scholar
  53. 53.
    Whittle, B. J., J. Lopez-Belmonte, and S. Moncada. 1990. Regulation of gastric mucosal integrity by endogenous nitric oxide: interactions with prostanoids and sensory neuropeptides in the rat. Brit. J. Pharmacol. 99:607–611.Google Scholar
  54. 54.
    Wong, H., W. D. Anderson, T. Cheng, and K. T. Riabowol. 1994. Monitoring mRNA expression by polymerase chain reaction: the “primer-dropping” method. Anal. Biochem. 223:251–258.Google Scholar
  55. 55.
    Xie, Q. W., Y. Kashiwabara, and C. Nathan. 1994. Role of transcription factor NF-kappa B ?Rel in induction of nitric oxide synthase. J. Biol. Chem. 269:4705–4708.Google Scholar
  56. 56.
    Yang, Z., T. Suomalainen, A. Mäyrä-Mäkinen, and E. Huttunen. 1997. Antimicrobial activity of 2-pyrrolidone-5-carboxylic acid produced by lactic acid bacteria. J. Food Protect. 60:1–5.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Riku Korhonen
    • 1
  • Riitta Korpela
    • 2
  • Maija Saxelin
    • 2
  • Markku Mäki
    • 3
    • 4
  • Hannu Kankaanranta
    • 1
  • Eeva Moilanen
    • 5
  1. 1.The Immunopharmacological Research Group, Medical SchoolUniversity of Tampere, and Tampere University HospitalFinland
  2. 2.Valio LtdHelsinkiFinland
  3. 3.Pediatric Research Center, Medical SchoolUniversity of TampereFinland
  4. 4.Department of PediatricsTampere University HospitalTampereFinland
  5. 5.The Immunopharmacological Research Group, Medical SchoolUniversity of Tampere, and Tampere University HospitalFinland

Personalised recommendations