Skip to main content
Log in

Retinoic acid induction of sialyltransferase activity in neuroblastoma cells of differing sialylation potentials

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

In order to determine how glycosylation changes associated with cellular differentiation may be influenced by the basal cellular sialylation potential, the effect of retinoic acid (RA)-induced differentiation was investigated in neuroblastoma cells expressing differing levels (and activities) of the α2,6(N) sialyltransferase (ST6N) enzyme. The increase in ST activity was proportional to the basal cellular sialylation potentials with the high activity clones showing the greatest increase. This was paralleled by an up-regulation of the level of overall sialoglycoprotein glycosylation level. An increase in the levels of the polysialic acid (PSA) epitope was associated with a parallel increase in the levels of the neural cell adhesion molecule (NCAM) protein backbone although there was no overall change in the PSA:NCAM ratio following RA treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Breen KC, Coughlan CM, Hayes FD, Mol Neurobiol 16, 163–220 (1998).

    Google Scholar 

  2. Cummings RD. In Glycoconjugates: composition, structure and function, edited by Allen HJ, Kisailus EC, (Marcel Dekker Inc., New York, 1992), pp. 333–60.

    Google Scholar 

  3. Harduin-Lepers A, Recchi MA, Delannoy P, Glycobiology 5, 741–58 (1995).

    Google Scholar 

  4. Georgopoulou N, Breen KC, J Neurosci Res 58, 641–51 (1999).

    Google Scholar 

  5. Coughlan CM, Seckl JR, Fox DJ, Unsworth R, Breen KC, Glycobiology 6, 15–22 (1996).

    Google Scholar 

  6. Coughlan CM, Breen KC, J Neurosci Res 51, 619–26 (1998).

    Google Scholar 

  7. Davey FD, Breen KC, Tox Appl Pharmacol 151, 16–21 (1998).

    Google Scholar 

  8. Bruses JL, Rutishauser U, J Cell Biol 140, 1177–86 (1998).

    Google Scholar 

  9. Fast DG, Jamieson JC, McCaffrey G, Biochem Biophys Acta 1202, 325–30 (1993).

    Google Scholar 

  10. Bieberich E, Freischutz B, Liour SS, Yu RK, J Neurochem 71, 972–9 (1998).

    Google Scholar 

  11. Li M, Vemulapalli R, Ullah A, Izu L, Duffey ME, Lance P, Am J Physiol 37, G599-G606 (1998).

    Google Scholar 

  12. Breen KC, Kelly PG, Regan CM, J Neurochem, 48, 1486–93 (1987).

    Google Scholar 

  13. Breen KC, Regan CM, J Neurochem 50, 712–6 (1988).

    Google Scholar 

  14. Chen C, Fenderson BA, Andrews PW, Hakomori S, Biochemistry 28, 2229–38 (1989).

    Google Scholar 

  15. Osanai T, Watanabe Y, Sanai Y, Biochem Biophys Res Comm 241, 327–33 (1997).

    Google Scholar 

  16. Lotan R, Lotan D, Amos B, Exp Cell Res 177, 284–94 (1988).

    Google Scholar 

  17. Lotan R, Lotan D, Meromsky L, Cancer Res 44, 5805–12 (1984).

    Google Scholar 

  18. Moskal JR, Lockney MW, Marvel CC, Trosko JE, Sweeley CC, Cancer Res 47, 787–90 (1987).

    Google Scholar 

  19. Sacks PG, Amos B, Lotan R, Glycoco J 13, 791–6 (1996).

    Google Scholar 

  20. Ronn LCB, Hartz BP, Bock E, Experimental Gerontology 33, 853–64 (1998).

    Google Scholar 

  21. Cervello M, Damelio L, Tesoro V, Rougon G, Matranga V, Eur J Cell Biol 73, 270–5 (1997).

    Google Scholar 

  22. Rebahn M, Vacun G, Bayreuther K, Rosner H, NeuroReport 5, 941–4 (1994).

    Google Scholar 

  23. Husmann M, Gorgen I, Weisgerber C, Bitter-Suermann D, Dev Biol 136, 194–200 (1989).

    Google Scholar 

  24. Schubert D, Heinemann S, Carlisle W, Tarikas H, Kimes B, Partick J, Steinbach JH, Culp W, Brandt BL, Nature 249, 224–7 (1974).

    Google Scholar 

  25. Breen KC, Regan CM, J Neurochem 47, 1176–80 (1986).

    Google Scholar 

  26. Lowry GH, Rosenbrough NL, Farr AL, Randall RJ, J Biol Chem 193, 265–75 (1951).

    Google Scholar 

  27. Reboul P, George P, Miquel D, Louisot P, Broquet P, Glyco J 13, 69–79 (1996).

    Google Scholar 

  28. Breen KC, Potratz A, Georgopoulou N, Sandhoff K, Glyco J 15, 199–202 (1998).

    Google Scholar 

  29. Close BE, Colley KJ, J Biol Chem 273, 34586–93 (1998).

    Google Scholar 

  30. Muhlenhoff M, Eckhardt M, Bethe A, Frosch M, GerardySchahn R, EMBO J 15, 6943–50 (1996).

    Google Scholar 

  31. Ong E, Nakayama J, Angata K, Reyes L, Katsuyama T, Arai Y, Fukuda M, Glycobiology 8, 415–24 (1998).

    Google Scholar 

  32. Seidenfaden R, Hildebrandt H, J Neurobiol 46, 11–28 (2001).

    Google Scholar 

  33. Georgopoulou N, Breen KC, Glyco J 16, 649–57 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgopoulou, N., Breen, K.C. Retinoic acid induction of sialyltransferase activity in neuroblastoma cells of differing sialylation potentials. Glycoconj J 17, 781–786 (2000). https://doi.org/10.1023/A:1010936725694

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010936725694

Navigation