Skip to main content
Log in

Mutant PLP/DM20 Cannot Be Processed to Secrete PLP-Related Oligodendrocyte Differentiation/Survival Factor

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Most of the mutations within the PLP gene result in degeneration of oligodendrocytes and this is believed to be caused by intracellular trafficking defects. Previous studies have demonstrated that cells expressing the wild type PLP gene release a factor promoting differentiation/survival of oligodendrocyte and that this factor is the C-terminal portion of the protein itself. In this study we asked how the naturally occurring mutations of the PLP gene (jimpy, jimpy msd, and rumpshaker) affect this activity. We developed a transient expression system for retroviral production and transduction that enabled the expression of mutant PLP/DM20 cDNAs in NIH3T3 cells. None of the NIH3T3 cells producing mutant PLP/DM20s secreted the PLP-related factor that increases the number of oligodendrocytes. Since it has been shown that rumpshaker DM20 can be transported to the cell surface, but its folding is incorrect, absence of secretion of this factor is more heavily attributable to incorrect protein folding than to the defect in the PLP/DM20 trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ikenaka, K., Kagawa, T., and Mikoshiba, K. 1992. Selective expression of DM-20, an alternatively spliced myelin proteolipid protein gene product, in developing nervous system and in nonglial cells. J. Neurochem. 58:2248–2253.

    Google Scholar 

  2. Timsit, S., Bally-Cuif, L., Colman, D. R., and Zalc, B. 1992. DM-20 mRNA is expressed during the embryonic development nervous system of the mouse. J. Neurochem. 58:1172–1175.

    Google Scholar 

  3. Nave, K.-A., Lai, C., Bloom, F. E., and Milner, R. J. 1987. Splice site selection in the proteolipid protein (PLP) gene transcript and primary structure of the DM-20 protein of central nervous system myelin. Proc. Natl. Acad. Sci. USA 84:5665–5669.

    Google Scholar 

  4. Mikoshiba, K., Okano, H., Tamura, T., and Ikenaka, K. 1991. Structure and function of myelin protein gene. Annu. Rev. Neurosci. 14:201–217.

    Google Scholar 

  5. Skoff, R. P. and Knapp, P. E. 1992. Phenotypic expression of X-linked genetic defects affecting myelination; in Myelin: Biology and Chemistry, (Martenson R. E. ed) pp. 653–676. Boca Raton, CRC Press.

    Google Scholar 

  6. Hodes, M. E. and Dlouhy, S. R. 1996. The proteolipid protein gene: double, double,... and trouble. Am. J. Genet. 59:12–15.

    Google Scholar 

  7. Lyon, M. F. 1972. X-Chromosome inactivation and developmental patterns in mammals. Biol. Rev. 47:1–35.

    Google Scholar 

  8. Benjamins, J. A., Studzinski, D. M., and Skoff R. P. 1986. Biochemical correlates of myelination in brain and spinal cord of mice heterozygous for the jimpy gene. J. Neurochem. 47:1857–1863.

    Google Scholar 

  9. Kagawa, T., Ikenaka, K., Inoue, Y., Kuriyama, S., Tsujii, T., Nakao, J., Nakajima, K., Aruga, J., Okano, H., and Mikoshiba, K. 1994. Glial cell degeneration and hypomyelination caused by overexpression of myelin proteolipid protein gene. Neuron 13:427–442.

    Google Scholar 

  10. Readhead, C., Schneider, A., Griffiths, I., and Nave, K.-A. 1994. Premature arrest of myelin formation in transgenic mice with increased proteolipid protein gene dosage. Neuron 12:583–595.

    Google Scholar 

  11. Schneider, A., Griffiths, I. R., Readhead, C., and Nave, K.-A. 1995. Dominant-negative action of the jimpy mutation in mice complemented with an autosomal transgene for myelin proteolipid protein. Proc. Natl. Acad. Sci. USA 92:4447–4451.

    Google Scholar 

  12. Gow, A., Friedrich, Jr. V. L., and Lazzarini, R. A. 1994. Many naturally occurring mutations of myelin proteolipid protein impair its intercellular transport. J. Neurosci. Res. 37:574–583.

    Google Scholar 

  13. Gow, A., Gragerov, A., Gard, A., Colman, D. R., and Lazzarini, R. A. 1997. Conservation of topology, but not conformation, of the proteolipid proteins of the myelin sheath. J. Neurosci. 17:181–189.

    Google Scholar 

  14. Gow, A., Southwood, C. M., and Lazzarini, R. A. 1998. Disrupted proteolipid protein trafficking results in oligodendrocyte apoptosis in an animal model of Pelizaeus-Merzbacher Disease. J. Cell Biol. 140:925–934.

    Google Scholar 

  15. Jung, M., Sommer, I., Schachner, M., and Nave, K. A. 1996. Monoclonal Antibody O10 defines a conformationally sensitive cell-surface epitope of proteolipid protein (PLP): Evidence that PLP misfolding underlies dysmyelination in mutant mice. J. Neurosci. 16:7920–7929.

    Google Scholar 

  16. Roussel, G., Neskovic, N. M., Trifilieff, E., Artault, J.-C., and Nussbaum, J.-L. 1987. Arrest of proteolipid transport through the Golgi apparatus in Jimpy brain. J. Neurocytol. 16:195–204.

    Google Scholar 

  17. Macklin, W. B., Campagnoni, C. W., Deininger, P. L., and Gardinier, M. V. 1987. Structure and expression of the mouse myelin proteolipid protein gene. J. Neurosci. Res. 18:383–394.

    Google Scholar 

  18. Nave, K.-A., Bloom, F. E., and Milner, R. J. 1987. A single nucleotide difference in the gene for myelin proteolipid protein defines the jimpy mutation in mouse. J. Neurochem. 49:1873–1877.

    Google Scholar 

  19. Moriguchi, A., Ikenaka, K., Furuichi, T., Okano, H., Iwasaki, Y., and Mikoshiba, K. 1987. The fifth exon of the myelin proteolipid protein-coding gene is not utilized in the brain of jimpy mutant mice. Gene 55:333–337.

    Google Scholar 

  20. Bartlett, W. F., Knapp, P. E., and Skoff, R. P. 1988. Glial conditioned medium enables jimpy oligodendrocyte to express properties of normal oligodendrocytes; Production of myelin antigens and membranes. Glia 1:253–259.

    Google Scholar 

  21. Lachapelle, F., Lapie, P., Campagnoni, A. T., and Gumpel, M. 1991. Oligodendrocytes of jimpy phenotype can be partially restored by environmental factors in vivo. J. Neurosci. Res. 29:235–243.

    Google Scholar 

  22. Nakao, J., Yamada, M., Kagawa, T., Kim, S. U., Miyao, Y., Shimizu, K., Mikoshiba, K., and Ikenaka, K. 1995. Expression of proteolipid protein gene is directly associated with serection of a factor influencing oligodendrocyte development. J. Neurochem. 64:2396–2403.

    Google Scholar 

  23. Knapp, P. E., William, P. B., Laura, A. W., Yamada, M., Ikenaka, K., and Skoff, R. 1999. Programmed cell death without DNA fragmentation in jimpy mouse: secreted factors can enhance survival. Cell Death Differ. 6:136–145.

    Google Scholar 

  24. Yamada, M., Ivanova, A., Yamaguchi, Y., Lees, M. B., and Ikenaka, K. 1999. PLP gene product can be secreted and exhibit biological activity during early development. J. Neurosci. 19:2143–2151.

    Google Scholar 

  25. Gencic, S. and Hudson, L. 1990. Conservative amino acid substitution in the myelin proteolipid protein of jimpymsd mice. J. Neurosci. 10:117–124.

    Google Scholar 

  26. Schneider, A., Montague, P., Griffiths, I. R., Fanarraga, M., Kennedy, P., Brophy, P., and Nave, K. A. 1992. Uncoupling of hypomyelination and glial cell death by a mutation in the proteolipid protein gene. Nature 358:758–761.

    Google Scholar 

  27. Yoshimatsu, T., Tamura, M., Kuriyama, S., and Ikenaka, K. 1998. Improvement of retroviral packaging cell lines by introducing the polyomavirus early region. Hum. Gene Ther. 9:161–172.

    Google Scholar 

  28. Ikeda, H., Yoshida, J., Yamada, H., Yoshimatsu, T., and Ikenaka, K. 1997. Retroviral introduction of the p16 gene into murine cell line to elicit marked antiproliferative effect. Jpn. J. Cancer Res. 88:712–717.

    Google Scholar 

  29. Bottenstein, J. E., Hunter, S. F., and Seidel, M. 1988. CNS neuronal cell line-derived factors regulated gliogenesis in neonatal rat brain cultures. J. Neurosci. Res. 20:291–303.

    Google Scholar 

  30. Sommer, I. and Schachner, M. 1981. Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: An immunocytological study in the central nervous system. Develop. Biol. 83:311–327.

    Google Scholar 

  31. Yamamura, T., Konola, J. T., Wekerle, H., and Lees, M. B. 1991. Monoclonal antibodies against myelin proteolipid protein: Identification and characterization of two major determinants. J. Neurochem. 57:1671–1680.

    Google Scholar 

  32. Klugmann, M., Schwab, M. H., Pühlhofer, A., Schneider, A., Zimmeremann, F., Griffiths, I. R., and Nave, K.-A. 1997. Assembly of CNS myelin in the absence of proteolipid protein. Neuron 18:59–70.

    Google Scholar 

  33. Nixon, R. A. 1982. Increased axonal proteolysis in myelin-deficient mutant mice. Science 215:999–1001.

    Google Scholar 

  34. Griffiths, I., Klugmann, M., Anderson, T., Yool, D., Thomson, C., Schwab, M. H., Schneider, A., Zimmermann, F., McCulloch, M., Nadon, N., and Nave, K.-A. 1998. Axonal swelling and degeneration in mice lacking the major proteolipid of myelin. Science 280:1610–1613.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, M., Jung, M., Tetsushi, K. et al. Mutant PLP/DM20 Cannot Be Processed to Secrete PLP-Related Oligodendrocyte Differentiation/Survival Factor. Neurochem Res 26, 639–645 (2001). https://doi.org/10.1023/A:1010935203196

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010935203196

Navigation