Skip to main content
Log in

Reverse hyaluronan substrate gel zymography procedure for the detection of hyaluronidase inhibitors

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Little is known of the ubiquitous inhibitors of hyaluronidase, molecules that may be important for the deposition of hyaluronan. A reverse hyaluronan-substrate gel procedure is described here that detects such inhibitors, even in crude biological extracts, and is independent of the catalytic mechanism of the target enzyme. Following electrophoresis, hyaluronan-containing gels are incubated in a hyaluronidase solution. Alcian blue-staining bands indicate hyaluronan protected from degradation and the location of hyaluronidase inhibitors. Coordinated use of hyaluronan substrate gel and reverse substrate gel procedures provides estimates of the number and relative molecular sizes of both enzymes and their inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meyer K, In The Enzymes, edited by Boyer P, Vol. 5 (Academic Press, New York, 1971), pp. 307–20.

    Google Scholar 

  2. Kreil G, Protein Science 4, 1666–9 (1995).

    Google Scholar 

  3. Frost GI, Csóka T, Stern R, Trends Glycosci Glycotech 8, 419–34 (1997).

    Google Scholar 

  4. Csóka TB, Frost GI, Stern R, Invasion Metastasis 17, 297–311 (1997).

    Google Scholar 

  5. Duran-Reynals F, J Exp Med 58, 161–81 (1933).

    Google Scholar 

  6. Haas E, J Biol Chem 163, 63–88 (1946).

    Google Scholar 

  7. Dorfman A, Ott ML, Whitney R, J Biol Chem 174, 621–9 (1948).

    Google Scholar 

  8. Toole BP, In Cell Biology of Extracellular Matrix, edited by Hay ED (Plenum Press, New York, 1991), pp. 149–75.

    Google Scholar 

  9. Weigel PH, Fuller GM, LeBoeuf RD, J Theor Biol 119, 219–34 (1986).

    Google Scholar 

  10. Delpech B, Girard N, Bertr P, Courel M-N, Chauzy C, Delpech A, J Int Med 242, 41–8 (1997).

    Google Scholar 

  11. Itano N, Kimata K, J Biol Chem 271, 9875–8 (1996).

    Google Scholar 

  12. Spicer AP, Augustine ML, McDonald JA, J Biol Chem 271, 23400–6 (1996).

    Google Scholar 

  13. Weigel PH, Hascall VC, Tammi M, J Biol Chem 272, 13 997–14 000 (1997).

    Google Scholar 

  14. Duran-Reynals F, Compt Rend Soc Biol 99, 6–7 (1928).

    Google Scholar 

  15. Duran-Reynals F, Suner Pi J, Compt Rend Soc Biol 99, 1908–11 (1929).

    Google Scholar 

  16. Duran-Reynals F, J Exp Med 50, 327–40 (1929).

    Google Scholar 

  17. Duran-Reynals F, Stewart FW, Amer J Canc 15, 2790–7 (1933).

    Google Scholar 

  18. Chain E, Duthie ES, Brit J Exp Path 21, 324–38 (1940).

    Google Scholar 

  19. Hyman JJ, Friedman BA, Freedler SO, Surg Gynecol Obstet 100, 515–20 (1955).

    Google Scholar 

  20. Fiszer-Szafarz B, Proc Soc Exp Biol Med 129, 300–2 (1968).

    Google Scholar 

  21. Kolaova M, Neoplasma 24, 285–90 (1977).

    Google Scholar 

  22. Snively GG, Glick D, J Clin Invest 29, 1087–90 (1950).

    Google Scholar 

  23. Grais ML, Glick D, J Invest Dermatol 11, 259–73 (1948).

    Google Scholar 

  24. Newman JK, Berenson GS, Mathews MB, Goldwasser E, Dorfman A, J Biol Chem 217, 31–41 (1955).

    Google Scholar 

  25. Mathews MB, Moses FE, Hart W, Dorfman A, Arch Biochem Biophys 35, 93–100 (1952).

    Google Scholar 

  26. Pogrel MA, Low MA, Stern R, Int J Oral Biol 24, 75–80 (1999).

    Google Scholar 

  27. Mathews MB, Dorfman A, Physiol Rev 35, 381–402 (1955).

    Google Scholar 

  28. Guntenhoener MW, Pogrel MA, Stern R, Matrix 12, 388–96 (1992).

    Google Scholar 

  29. Frost GI, Csóka TB, Wong T, Stern R, Biochem Biophys Res Commun 236, 10–15 (1997).

    Google Scholar 

  30. Laemmli UK, Nature 227, 680–5 (1970).

    Google Scholar 

  31. Ghiggeri GM, Ciano G, Ginevri F, Mutti A, Bergamaschi E, Alinovi R, Righetti PG, J Chromat 452, 347–57 (1988).

    Google Scholar 

  32. Mio K, Carrette O, Maibach HI, Stern R, J Biol Chem, 275, 32413–21 (2000).

    Google Scholar 

  33. Afify AM, Stern M, Guntenhoener M, Stern R, Arch Biochem Biophys 305, 434–41 (1993).

    Google Scholar 

  34. De Salegui M, Pigman W, Arch Biochem Biophys 120, 60–7 (1967).

    Google Scholar 

  35. Cherr GN, Meyers SA, Yudin AI, VeVoort CA, Myles DG, Primakoff P, Overstreet JW, Develop Biol 175, 142–53 (1996).

    Google Scholar 

  36. Hunnicutt GR, Mahan K, Lathrop WF, Ramarao CS, Myles DG, Primakoff P, Biol Reprod 54, 1343–9 (1996).

    Google Scholar 

  37. Meyer MF, Kreil G, Aschauer H, FEBS Lett 413, 385–8 (1997).

    Google Scholar 

  38. Johnston JP, Biochem J 59, 620–7 (1955).

    Google Scholar 

  39. Davies M, Nichol LW, Ogston AG, Biochim Biophys Acta 75, 436–8 (1963).

    Google Scholar 

  40. Gramling E, Niedermeier W, Holley HL, Pigman W, Biochim Biophys Acta 69, 552–8 (1963).

    Google Scholar 

  41. Toole BP, Cur Opin Cell Biol 2, 839–44 (1990).

    Google Scholar 

  42. Knudson CB, Knudson W, Faseb J 7, 1233–41 (1993).

    Google Scholar 

  43. Csóka TB, Frost GI, Heng HIHQ, Scherer SW, Mohapatra G, Stern R, Genomics 48, 63–70 (1998).

    Google Scholar 

  44. Kuppusamy UR, Khoo HE, Das NP, Biochem Pharmacol 40, 397–401 (1990).

    Google Scholar 

  45. Kakegawa H, Matsumoto H, Endo K, Satoh T, Nonaka G-I, Nishioka I, Chem Pharm Bull (Tokyo) 11, 5079–82 (1985).

    Google Scholar 

  46. Kakegawa H, Matsumoto H, Satoh T, Planta Med 27, 385–9 (1988).

    Google Scholar 

  47. Toennesen HH, Int J Pharm 50, 91–5 (1989).

    Google Scholar 

  48. Furuya T, Yamagata S, Shimoyama Y, Fujihara M, Morishima N, Ohtsuki K, Biol Pharm Bull 20, 973–7 (1997).

    Google Scholar 

  49. Kakegawa H, Mitsuo N, Matsumoto H, Satoh T, Akagi M, Tasaka K, Chem Phar Bull (Tokyo) 33, 3738–44 (1985).

    Google Scholar 

  50. Kuppusamy UR, Das NP, Experientia 47, 1196–2000 (1991).

    Google Scholar 

  51. Li M-W, Yudin AI, Ve Voort CA, Sabeur K, Primakoff P, Overstreet JW, Biol Reprod 56, 1383–9 (1997).

    Google Scholar 

  52. Stern M, Stern R, Matrix 12, 397–403 (1992).

    Google Scholar 

  53. Frost GI, Stern R, Anal Biochem 251, 263–9 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mio, K., Stern, R. Reverse hyaluronan substrate gel zymography procedure for the detection of hyaluronidase inhibitors. Glycoconj J 17, 761–766 (2000). https://doi.org/10.1023/A:1010928523877

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010928523877

Navigation