Skip to main content
Log in

Functional Analysis for Peripheral Myelin Protein PASII/PMP22: Is It a Member of Claudin Superfamily?

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Two major glycoproteins, P0 and PASII/PMP22, are specifically expressed in peripheral myelin. Point mutations of these proteins and over or under expression of PASII/PMP22 cause various hereditary peripheral neuropathies. P0 is well characterized as a major adhesion molecule in PNS myelin, but the function of PASII/PMP22 is still unknown. Recently, an oligodendrocyte-specific protein (OSP) was identified as a member of the claudin family and as a component of tight junctions of central myelins. Since PASII/PMP22 shows similarity in structure to OSP, which is a tetraspan membrane protein, we speculated if PASII/PMP22 could be a member of claudin superfamily. The primary structure of PASII/PMP22 showed a significant homology of 48% and a 21% identity with the OSP sequence. Exogenous expression of PASII/PMP22 in C6 cells significantly inhibited BrdU incorporation to the cells. The C6 cells stably transfected with PASII/PMP22 cDNA showed no homophilic cell adhesive activity. When dorsal root ganglion (DRG) neurons were cocultured on PASII/PMP22 expressing cells, both neurite extension and branching of DRG neurons were significantly inhibited. These results indicate that PASII/PMP22 may play a role in a turning point of Schwann cell development from proliferation to differentiation. On the other hand, the cells expressing claudin family proteins are reported to show strong cell adhesive activity and an ability to form tight junctions with neighboring cells. For this reason, we currently do not have any functional data supporting that PASII/PMP22 is the member of claudin superfamily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Uyemura, K., Kitamura, K., and Miura, M. 1992. Structure and molecular biology of P0 Protein. Pages 481–508, in Martenson, R. E. (ed.), Myelin: Biology and Chemistry, CRC Press, Raton, FL.

    Google Scholar 

  2. Filbin, M. T. and Tennekoon, G. I. 1992. Myelin P0-protein, more than just a structural protein? Bioessays 14:541–547.

    Google Scholar 

  3. Kitamura, K., Suzuki, M., and Uyemura, K. 1976. Purification and partial characterization of two glycoproteins in bovine peripheral nerve myelin membrane. Biochim. Biophys. Acta 455:806–816.

    Google Scholar 

  4. Kitamura, K., Sakamoto, Y., Suzuki, M., and Uyemura, K. 1981. Microheterogeneity of carbohydrate in P0 protein from bovine peripheral nerve myelin. Pages 273–274, in: Yamakawa, T., Osawa, T., and Handa, S. (eds.), Proc. 6th International Symposium on Glycoconjugates, Jpn Sci Soc Press, Tokyo.

    Google Scholar 

  5. Manfioletti, G., Ruaro, M. E., Del Sal, G., Philipson, L., and Schneider, C. 1990. A growth arrest-specific (gas) gene codes for a membrane protein. Mol. Cell. Biol. 10:2924–2930.

    Google Scholar 

  6. Sprayer, P., Kuhn, G., Hanemann, C. O., Gillen, C., Schaal, H., Kuhn, R., Lemke, G., and Muller, H. W. 1991. Axon-regulated expression of a Schwann cell transcript that is homologous to a ‘growth-arrest-specific’ gene. EMBO J. 10:3661–3668.

    Google Scholar 

  7. Welcher, A. A., Suter, U., De Leon, M., Snipes, G. J., and Shooter, E. M. 1991. A myelin protein is encoded by the homologue of a growth arrest-specific gene. Proc. Natl. Acad. Sci. USA 88:7195–7199.

    Google Scholar 

  8. Snipes, G. J., Suter, U., Welcher, A. A., and Shooter, E. M. 1992. Characterization of a novel peripheral nervous system myelin protein (PMP22/SR13). J. Cell Biol. 117:225–238.

    Google Scholar 

  9. Uyemura, K. 1993. Functional glycoproteins expressed in Schwann cell membrane. Neurosci. Res. 16:9–13.

    Google Scholar 

  10. Snipes, G. J., Suter, U., and Shooter, E. M. 1993. Human peripheral myelin protein-22 carries the L2/HNK-1 carbohydrate adhesion epitope. J. Neurochem. 61:1961–1964.

    Google Scholar 

  11. Kitamura, K., Uyemura, K., Shibuya, K., Sakamoto, Y., Yoshimura, K., and Nomura, M. 2000. Structure of a major oligosaccharide of PASII/PMP22 glycoprotein in bovine peripheral nerve myelin. J. Neurochem. 75:853–860.

    Google Scholar 

  12. Miyazaki, T., Takeda, Y., Murakami, Y., Kawano, H., Shimazu, T., Toya, S., and Uyemura, K. 1995. Distribution of PASII/ PMP22 and connexin 32 proteins in the peripheral nervous system. Neurochem. Int. 27:377–383.

    Google Scholar 

  13. Snipes, G. J., Suter, U., and Shooter, E. M. 1993. The genetics of myelin. Curr. Biol. 3:694–702.

    Google Scholar 

  14. Suter, U. and Snipes, G. J. 1995. Peripheral myelin protein 22: facts and hypotheses. J. Neurosci. Res. 40:145–151.

    Google Scholar 

  15. Uyemura, K., Takeda, Y., Asou, H., and Hayasaka, K. 1994. Neural cell adhesion proteins and neurological diseases. J. Biochem. 116:1187–1192.

    Google Scholar 

  16. Roa, B. B. and Lupski, J. R. 1994. Molecular genetics of Charcot-Marie-Tooth neuropathy. Adv. Hum. Genet. 22:117–152.

    Google Scholar 

  17. Suter, U., Welcher, A. A., Ozcelik, T., Snipes, G. J., Kosaras, B., Francke, U., Billings-Gagliardi, S., Sidman, R. L., and Shooter, E. M. 1992. Trembler mouse carries a point mutation in a myelin gene. Nature 356:241–244.

    Google Scholar 

  18. Valentijn, L. J., Baas, F., Wolterman, R. A., Hoogendijk, J. E., van den Bosch, N. H., Zorn, I., Gabreels-Festen, A. W., De Visser, M., and Bolhuis, P. A. 1992. Identical point mutations of PMP-22 in Trembler-J mouse and Charcot-Marie-Tooth disease type 1A. Nat. Genet. 2:288–291.

    Google Scholar 

  19. Suter, U. and Nave, K. A. 1999. Transgenic mouse models of CMT1A and HNPP. Ann. NY Acad. Sci. 883:247–253.

    Google Scholar 

  20. Lupski, J. R., de Oca-Luna, R. M., Slaugenhaupt, S., Pentao, L., Guzzetta, V., Trask, B. J., Saucedo-Cardenas, O., Barker, D. F., Killian, J. M., Garcia, C. A., Chakravarti, A., and Patel, P. I. 1991. DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell 66:219–232.

    Google Scholar 

  21. Patel, P. I., Roa, B. B., Welcher, A. A., Schoener-Scott, R., Trask, B. J., Pentao, L., Snipes, G. J., Garcia, C. A., Francke, U., Shooter, E. M., Lupski, J. R., and Suter, U. 1992. The gene for the peripheral myelin protein PMP-22 is a candidate for Charcot-Marie-Tooth disease type 1A. Nat. Genet. 1:159–165.

    Google Scholar 

  22. Roa, B. B., Dyck, P. J., Marks, H. G., Chance, P. F., and Lupski, J. R. 1993. Dejerine-Sottas syndrome associated with point mutation in the peripheral myelin protein 22 (PMP22) gene. Nat. Genet. 5:269–273.

    Google Scholar 

  23. Chance, P. F., Alderson, M. K., Leppig, K. A., Lensch, M. W., Matsunami, N., Smith, B., Swanson, P. D., Odelberg, S. J., Disteche, C. M., and Bird, T. D. 1993. DNA deletion associated with hereditary neuropathy with liability to pressure palsies. Cell 72:143–151.

    Google Scholar 

  24. Naef, R. and Suter, U. 1998. Many facets of the peripheral myelin protein PMP22 in myelination and disease. Microsc. Res. Tech. 41:359–371.

    Google Scholar 

  25. Henry, E. W., Cowen, J. S., and Sidman, R. L. 1983. Comparison of Trembler and Trembler-J mouse phenotypes: varying severity of peripheral hypomyelination. J. Neuropathol. Exp. Neurol. 42:688–706.

    Google Scholar 

  26. Zoidl, G., Blass-Kampmann, S., D'Urso, D., Schmalenbach, C., and Muller, H. W. 1995. Retroviral-mediated gene transfer of the peripheral myelin protein PMP22 in Schwann cells: modulation of cell growth. EMBO J. 14:1122–1128.

    Google Scholar 

  27. Fabbretti, E., Edomi, P., Brancolini, C., and Schneider, C. 1995. Apoptotic phenotype induced by overexpression of wild-type gas3/PMP22: its relation to the demyelinating peripheral neuropathy CMT1A. Genes & Develop. 9:1846–1856.

    Google Scholar 

  28. Adlkofer, K., Martini, R., Aguzzi, A., Zielasek, J., Toyka, K. V., and Suter, U. 1995. Hypermyelination and demyelinating peripheral neuropathy in Pmp22-deficient mice. Nat. Genet. 11:274–280.

    Google Scholar 

  29. Sereda, M., Griffiths, I., Puhlhofer, A., Stewart, H., Rossner, M. J., Zimmerman, F., Magyar, J. P., Schneider, A., Hund, E., Meinck, H. M., Suter, U., and Nave, K. A. 1996. A transgenic rat model of Charcot-Marie-Tooth disease. Neuron 16:1049–1060.

    Google Scholar 

  30. Maycox, P. R., Ortuno, D., Burrola, P., Kuhn, R., Bieri, P. L., Arrezo, J. C., and Lemke, G. 1997. A transgenic mouse model for human hereditary neuropathy with liability to pressure palsies. Mol. Cell. Neurosci. 8:405–416.

    Google Scholar 

  31. Bronstein, J. M., Popper, P., Micevych, P. E., and Farber, D. B. 1996. Isolation and characterization of a novel oligodendrocytespecific protein. Neurology 47:772–778.

    Google Scholar 

  32. Morita, K., Sasaki, H., Fujimoto, K., Furuse, M., and Tsukita, S. 1999. Claudin-11/OSP-based tight junctions of myelin sheaths in brain and Sertoli cells in testis. J. Cell Biol. 145:579–588.

    Google Scholar 

  33. Attardi, L. D., Reczek, E. E., Cosmas, C., Demicco, E. G., Mc-Currach, M. E., Lowe, S. W., and Jacks, T. 2000. PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. Genes & Develop. 14:704–718.

    Google Scholar 

  34. Choczynski, P. and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.

    Google Scholar 

  35. Takeda, Y., Asou, H., Murakami, Y., Miura, M., Kobayashi, M., and Uyemura, K. 1996. A non-neuronal isoform of cell adhesion molecule L1: tissue-specific expression and functional analysis. J. Neurochem. 66:2338–2349.

    Google Scholar 

  36. Yazaki, T., Miura, M., Asou, H., Toya, S., and Uyemura, K. 1991. Myelin P0 protein expressed in C6 cells promotes neurite outgrowth. Biomed. Res. 12:223–230.

    Google Scholar 

  37. Kuhn, G., Lie, A., Wilms, S., and Muller, H. W. 1993. Coexpression of PMP22 gene with MBP and P0 during de novo myelination and nerve repair. Glia 8:256–264.

    Google Scholar 

  38. D'Urso, D., Ehrhardt, P., and Muller, H. W. 1999. Peripheral myelin protein 22 and protein zero: a novel association in peripheral nervous system myelin. J. Neurosci. 19:3396–3403.

    Google Scholar 

  39. LeBlanc, A. C., Windebank, A. J., and Poduslo, J. F. 1992. P0 gene expression in Schwann cells is modulated by an increase of cAMP which is dependent on the presence of axons. Mol. Brain Res. 12:31–38.

    Google Scholar 

  40. Karlsson, C., Afrakhte, M., Westermark, B., and Paulsson, Y. 1999. Elevated level of gas3 gene expression is correlated with G0 growth arrest in human fibroblasts. Cell. Biol. Int. 23:351–358.

    Google Scholar 

  41. D'Urso, D., Brophy, P. J., Staugaitis, S. M., Gillespie, C. S., Frey, A. B., Stempak, J. G., and Colman, D. R. 1990. Protein zero of peripheral nerve myelin: biosynthesis, membrane insertion, and evidence for homotypic interaction. Neuron 4:449–460.

    Google Scholar 

  42. Filbin, M. T. and Tennekoon, G. I. 1991. The role of complex carbohydrates in adhesion of the myelin protein, P0. Neuron 7:845–855.

    Google Scholar 

  43. Yazaki, T., Miura, M., Asou, H., Kitamura, K., Toya, S., and Uyemura, K. 1992. Glycopeptide of P0 protein inhibits homophilic cell adhesion. Competition assay with transformants and peptides. FEBS Lett. 307:361–366.

    Google Scholar 

  44. Naef, R., Adlkofer, K., Lescher, B., and Suter, U. 1997. Aberrant protein trafficking in Trembler suggests a disease mechanism for hereditary human peripheral neuropathies. Mol. Cell. Neurosci. 9:13–25.

    Google Scholar 

  45. Tobler, A. R., Notterpek, L., Naef, R., Taylor, V., Suter, U., and Shooter, E. M. 1999. Transport of Trembler-J mutant peripheral myelin protein 22 is blocked in the intermediate compartment and affects the transport of the wild-type protein by direct interaction. J. Neurosci. 19:2027–2036.

    Google Scholar 

  46. Huxley, C., Passage, E., Robertson, A. M., Youl, B., Huston, S., Manson, A., Saberan-Djoniedi, D., Figarella-Branger, D., Pellissier, J. F., Thomas, P. K., and Fontes, M. 1998. Correlation between varying levels of PMP22 expression and the degree of demyelination and reduction in nerve conduction velocity in transgenic mice. Hum. Mol. Genet. 7:449–458.

    Google Scholar 

  47. Niemann, S., Sereda, M. W., Suter, U., Griffiths, I. R., and Nave, K. A. 2000. Uncoupling of myelin assembly and Schwann cell differentiation by transgenic overexpression of peripheral myelin protein 22. J. Neurosci. 20:4120–4128.

    Google Scholar 

  48. Tsukita, S. and Furuse, M. 1999. Occludin and claudins in tightjunction strands: leading or supporting players? Trends Cell. Biol. 9:268–273.

    Google Scholar 

  49. Uyemura, K., Suzuki, M., Sakamoto, Y., and Tanaka, S. 1987. Structure of P0 protein: Homology to immunoglobulin superfamily. Biomed. Res. 8:353–357.

    Google Scholar 

  50. Morita, K., Furuse, M., Fujimoto, K., and Tsukita, S. 1999. Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc. Natl. Acad. Sci. USA 96:511–516.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeda, Y., Notsu, T., Kitamura, K. et al. Functional Analysis for Peripheral Myelin Protein PASII/PMP22: Is It a Member of Claudin Superfamily?. Neurochem Res 26, 599–607 (2001). https://doi.org/10.1023/A:1010927001378

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010927001378

Navigation