Skip to main content
Log in

Distribution of Glutamate Receptors of the NMDA Subtype in Brains of Heterozygous and Homozygous Weaver Mutant Mice

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In weaver mice, mutation of an G-protein inwardly rectifying K+ channel leads to a cerebellar developmental anomaly characterized by granule and Purkinje cell loss and, in addition, degeneration of dopaminergic neurons. To evaluate other deficits, glutamate receptors sensitive to N-methyl-d-aspartate (NMDA) were examined by autoradiography with [3H]MK-801 in 36 brain regions from heterozygous (wv/+) and homozygous (wv/wv) weaver mutants, and compared to wild type (+/+) mice. In wv/+ and wv/wv mutants labelling decreased in cortical regions, septum, hippocampus, subiculum, neostriatum, nucleus accumbens, superior colliculus and in the cerebellar granular layer. The reductions in [3H]MK-801 binding were particularly specific in the cerebellar granular layer of wv/wv mutants, but an ubiquitous altered NMDA receptor topology was revealed in other brain regions. Abnormal developmental signals, or aberrant cellular responses, may underlie widespread NMDA receptor reductions, while in cerebellar cortex they could be lacking due to the massive loss of cerebellar granule cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Sidman, R. L. 1968. Development of interneuronal connections in brains of mutant mice. Pages 163–193, in Carlson, F. D. (ed.), Physiological and Biochemical Aspects of Nervous Integration, Prentice Hall, Englewood Cliffs.

    Google Scholar 

  2. Lalonde, R. 1986. Acquired immobility response in weaver mutant mice. Exper. Neurol. 94:808–811.

    Google Scholar 

  3. Lalonde, R. and Botez, M. I. 1986. Navigational deficits in weaver mutant mice. Brain Res. 398:175–177.

    Google Scholar 

  4. Lalonde, R. 1987. Motor abnormalities in weaver mutant mice. Exp. Brain Res. 65:479–481.

    Google Scholar 

  5. Triarhou, L. C. and Ghetti, B. 1987. Neuroanatomical substrate of behavioural impairment in weaver mutant mice. Exp. Brain. Res. 68:434–436.

    Google Scholar 

  6. Lalonde, R., Manseau, M., and Botez, M. I. 1988. Spontaneous alternation and exploration in weaver mutant mice. Behav. Brain Res. 31:111–114.

    Google Scholar 

  7. Rakic, P. and Sidman, R. L. 1973. Sequences of developmental abnormalities leading to granule cells deficit in cerebellar cortex of weaver mutant mice. J. Comp. Neurol. 152:103–132.

    Google Scholar 

  8. Rakic, P. and Sidman, R. L. 1973. Organization of cerebellar cortex secondary to deficits of granular cells in weaver mutant mice. J. Comp. Neurol. 152:133–161.

    Google Scholar 

  9. Rezai, Z. and Yoon, C. H. 1972. Abnormal rate of granule cell migration in the cerebellum of “weaver” mutant mice. Dev. Biol. 29:17–26.

    Google Scholar 

  10. Rakic, P. and Sidman, R. L. 1973. Weaver mutant mouse cerebellum: Defective neuronal migration secondary to abnormality of Bergman glia. Proc. Nat. Acad. Sci. USA 70:240–244.

    Google Scholar 

  11. Sotelo, C. 1975. Anatomical, physiological and biochemical studies of the cerebellum from mutant mice. II. Morphological study of cerebellar cortical neurons and circuits in the weaver mouse. Brain Res. 94:19–44.

    Google Scholar 

  12. Sotelo, C. and Changeux, J. P. 1974. Bergman fibres and granular cell migration in the cerebellum of homozygous weaver mutant mouse. Brain. Res. 77:484–491.

    Google Scholar 

  13. Lane, J. D., Nadi, N. S., McBride, W. J., Aprison, M. H., and Kusano, K. 1977. Contents of serotonin norepinephrine and dopamine in the cerebrum of the 'staggerer', ‘weaver', and ‘nervous’ neurologically mutant mice. J. Neurochem. 29:349–350.

    Google Scholar 

  14. Schmidt, M. J., Sawyer, B. D., Perry, K. W., Fuller, R. W., Foreman, M. M., and Ghetti, B. 1982. Dopamine deficiency in the weaver mutant mouse. J. Neurosci. 2:376–380.

    Google Scholar 

  15. Roffler-Tarlov, S. and Graybiel, A. M. 1984. Weaver mutation has differential effects on the dopamine-containing innervation of the limbic and nonlimbic striatum. Nature 307:62–66.

    Google Scholar 

  16. Gupta, M., Felten, D. L., and Ghetti, B. 1987. Selective loss of monoaminergic neurons in weaver mutant mice: An immunocytochemical study. Brain Res. 402:379–382.

    Google Scholar 

  17. Triarhou, L. C., Norton, J., and Ghetti, B. 1988. Mesencephalic dopamine deficit involves areas A8, A9 and A10 in weaver mutant mice. Exp. Brain Res. 70:256–265.

    Google Scholar 

  18. Graybiel, A. M., Ohta, K., and Roffler-Tarlov, S. 1990. Patterns of cell and fibre vulnerability in the mesostriatal system of the mutant mouse weaver. I. Gradients and comparisons. J. Neurosci. 10:720–733.

    Google Scholar 

  19. Verney, C., Febvret-Muzerelle, A., and Gaspar, P. 1995. Early postnatal changes of the dopaminergic mesencephalic neurons in the weaver mutant mouse. Develop. Brain Res. 89:115–119.

    Google Scholar 

  20. Verina, T., Norton, J., Sorbel, J. J., Triarhou, L. C., Laferty, D., Richter, J. A., Simon, J. R., and Ghetti, B. 1997. Atrophy and loss of dopaminergic mesencephalic neurons in heterozygous weaver mice. Exp. Brain Res. 113:5–12.

    Google Scholar 

  21. Bayer, S. A., Wills, K. V., Triarhou, L. C., Verina, T., Thomas, J. D., and Ghetti, B. 1995. Selective vulnerability of lategenerated dopaminergic neurons of the substantia nigra in weaver mutant mice. Proc. Nat. Acad. Sci. USA 92:9137–9140.

    Google Scholar 

  22. Richter, J. A., Stotz, E. H., Ghetti, B., and Simon, J. R. 1992. Comparison of alterations in tyrosine hydroxylase, dopamine level and dopamine uptake in the striatum of the weaver mutant mouse. Neurochem. Res. 17:437–441.

    Google Scholar 

  23. Strazielle, C., Lalonde, R., Amdiss, F., Botez, M. I., Hébert, C., and Reader, T. A. 1998. Distribution of dopamine transporters in basal ganglia of cerebellar ataxic mice by [125I]RTI-121 quantitative autoradiography. Neurochem. Int. 32:61–68.

    Google Scholar 

  24. Roffler-Tarlov, S. and Graybiel, A. M. 1987. The postnatal development of the dopamine-containing innervation of dorsal and ventral striatum: Effects of the weaver gene. J. Neurosci. 7:2364–2372.

    Google Scholar 

  25. Reader, T. A., Ase, A. R., Hébert, C., and Amdiss, F. 1999. Distribution of dopamine, its metabolites, and D1 and D2 receptors in heterozygous and homozygous weaver mutant mice. Neurochem. Res. 24:1455–1470.

    Google Scholar 

  26. Dewar, K. M. 1999. Alterations in serotonin receptors in the neostriatum of weaver mutant mice. Neurochem. Res. 24:1449–1454.

    Google Scholar 

  27. Reader, T. A., Hébert, C., Ase, A. R., and Le Marec, N. 2000. Distribution of serotonin, its metabolites and 5-HT transporters in the neostriatum of Lurcher and weaver mutant mice. Neurochem. Int. (in press).

  28. Reader, T. A. and Dewar, K. M. 1999. Effects of denervation and hyperinnervation on dopamine and serotonin systems in the rat neostriatum: Implications for human Parkinson's disease. Neurochem. Int. 34:1–21.

    Google Scholar 

  29. Reeves, R. H., Crowley, M. R., Lorenzon, N., Pavan, W. J., Smeyne, R. J., and Goldowitz, D. 1989. The mouse neurological mutant weaver maps within the region of chromosome 16 that is homologous to human chromosome 21. Genomics 5:522–526.

    Google Scholar 

  30. Mjaatvedt, A. E., Cabin, D. E., Cole, S. E., Long, L. J., Breitwieser, G. E., and Reeves, R. H. 1995. Assessment of a mutation in the H5 domain of GIRK2 as a candidate for the weaver mutation. Genome Res. 5:453–463.

    Google Scholar 

  31. Patil, N., Cox, D. R., Bhat, D., Faham, M., Myers, R. M., and Peterson, A. S. 1995. A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nature Genet. 11:126–129.

    Google Scholar 

  32. Kofuji, P., Hofer, M., Millen, K. J., Millonig, J. H., Davidson, N., Lester, H. A., and Hatten, M. E. 1996. Functional analysis of the mutant weaver GIRK2 potassium channel and rescue of weaver granule cells. Neuron 16:941–952.

    Google Scholar 

  33. Tong, Y., Wei, J., Zhang, S., Strong, J. A., Dlouhy, S. R., Hodes, M. E., Ghetti, B., and Yu, L. 1996. The weaver mutation changes the ion selectivity of the affected inwardly rectifying potassium channel GIRK2. FEBS Lett. 390:63–68.

    Google Scholar 

  34. Surmeier, D. J., Mermelstein, P. G., and Goldowitz, D. 1996. The weaver mutation of GIRK2 results in a loss of inwardly rectifying K+ current in cerebellar granule cells. Proc. Nat. Acad. Sci. USA 93:11191–11195.

    Google Scholar 

  35. Slesinger, P. A., Patil, N., Liao, Y. J., Jan, L. Y., and Cox, D. R. 1996. Functional effects of the weaver mutation on G protein-gated inwardly rectifying K+ channels. Neuron 16:321–331.

    Google Scholar 

  36. Navarro, B., Kennedy, M. E., Velimirovic, B., Bhat, D., Peterson, A. S., and Clapham, D. E. 1996. Non-selective and Gbγ-insensitive weaver K+ channels. Science 272:1950–1953.

    Google Scholar 

  37. Lester, H. A. and Karschin, A. 2000. Gain of function mutants: Ion channels and G protein-coupled receptors. Annu. Rev. Neurosci. 23:89–125.

    Google Scholar 

  38. Zuo, J., De Jager, P. L., Takahashi, K. A., Jiang, W., Linden, D. J., and Heintz, N. 1997. Neurodegeneration in Lurcher mutant mice caused by mutation in δ2 glutamate receptor gene. Nature 388:769–773.

    Google Scholar 

  39. Zhao, H. M., Wenthold, R. J., and Petralia, R. S. 1998. Glutamate receptor targeting to synaptic populations on Purkinje cells is developmentally regulated. J. Neurosci. 18:5517–5528.

    Google Scholar 

  40. Strazielle, C., Lalonde, R., and Reader, T. A. 2000. Autoradiography of glutamate receptor binding in adult Lurcher mutant mice. J. Neuropathol. Exp. Neurol. 59:707–722.

    Google Scholar 

  41. Reader, T. A. and Strazielle, C. 1999. Quantitative autoradiography of monoamine uptake sites and receptors in rat and mouse brain. Pages 1–51, in Boulton, A. A., Bateson, A., and Baker, G. B. (eds.), Neuromethods: Cell Neurobiology Techniques, Vol. 33, Humana Press, Totowa, New Jersey.

    Google Scholar 

  42. Franklin, K. B. J. and Paxinos, G. 1997. The Mouse Brain in Stereotaxic Coordinates. Academic Press, New York.

    Google Scholar 

  43. Hébert, C., Habimana, A., Élie, R., and Reader, T. A. 2001. Effect of chronic antidepressant treatments on 5-HT and NA transporters in rat brain: An autoradiographic study. Neurochem. Int. 38:63–74.

    Google Scholar 

  44. Barlow, R. B. 1983. Biodata Handling with Microcomputers. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  45. Frank, L. and Althoen, S. C. 1994. Statistics: Concepts and Applications. Cambridge University Press, New York.

    Google Scholar 

  46. Dure, L. S. IV and Young, A. B. 1995. The distribution of glutamate receptor subtypes in mammalian central nervous system using quantitative in vitro autoradiography. Pages 83–94, in Stone, T. W. (ed.), CNS Neurotransmitters and Neuromodulators: Glutamate, CRC, Boca Raton, Florida.

    Google Scholar 

  47. Greenamyre, J. T., Olson, J. M. M., Penney, J. B., and Young, A. B. 1985. Autoradiographic characterization of N-methyl-D-aspartate-, quisqualate-and kainate-sensitive glutamate binding sites. J. Pharmac. Exp. Ther. 233:254–263.

    Google Scholar 

  48. Makowiec, R. L., Cha, J. J., Penney, J. B., and Young, A. B. 1991. Cerebellar excitatory amino acid binding sites in normal, granuloprival, and Purkinje cell-deficient mice. Neuroscience 42:671–681.

    Google Scholar 

  49. Curtis, D. R., Phillis, J. W., and Watkins, J. C. 1960. The chemical excitation of spinal neurones by certain acidic amino acids. J. Physiol. (Lond.) 150:656–682.

    Google Scholar 

  50. Cotman, C. W., Monaghan, D. T., Ottersen, O. P., and Storm-Mathisen, J. 1987. Anatomical organization of excitatory amino acid receptors and their pathways. Trends Neurosci. 10:273–280.

    Google Scholar 

  51. Harris, E. W. 1995. Subtypes of glutamate receptors: Pharmacological classification. Pages 95–125, in Stone, T. W. (Ed.), CNS Neurotransmitters and Neuromodulators: Glutamate, CRC, Boca Raton, Florida.

    Google Scholar 

  52. Cotman, C. W., Monaghan, D. T., and Ganong, A. H. 1988. Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic plasticity. Ann. Rev. Neurosci. 11:61–80.

    Google Scholar 

  53. Monaghan, D. T., Olverman, H. J., Nguyen, L., Watkins, J. C., and Cotman, C. W. 1988. Two classes of N-methyl-D-aspartate recognition sites: Differential distribution and differential regulation by glycine. Proc. Natl. Acad. Sci. USA 85:9836–9840.

    Google Scholar 

  54. Lerma, J., Zukin, R. S., and Bennett, M. V. L. 1990. Glycine decreases desensitization of N-methyl-D-aspartate (NMDA) receptors expressed in Xenopus-oocytes and is required for NMDA responses. Proc. Natl. Acad. Sci. USA 87:2354–2358.

    Google Scholar 

  55. Monaghan, D. T. and Cotman, C. W. 1985. Distribution of NMDA-sensitive L-3H-glutamate binding sites in rat brain as determined by quantitative autoradiography. J. Neurosci. 5:2909–2919.

    Google Scholar 

  56. Albin, R. L., Makowiec, R. L., Hollingsworth, Z. R., Dure, L. S., IV, Penney, J. B., and Young, A. B. 1992. Excitatory amino acid binding sites in the basal ganglia of the rat: A quantitative autoradiographic study. Neuroscience 46:35–48.

    Google Scholar 

  57. Olson, J. M., Greenamyre, J. T., Penney, J. B., and Young, A. B. 1987. Autoradiographic localization of cerebellar excitatory amino acid binding sites in the mouse. Neuroscience 22:913–923.

    Google Scholar 

  58. Eisenman, L. M. 2000. Antero-posterior boundaries and compartments in the cerebellum: Evidence from selected neurological mutants. Pages 23–30, in Gerritts, N. M., Ruiggrok, T. J. H., and de Zeeuw, C. I. (eds.), Cerebellar Modules: Molecules, Morphology and Function, Progr. Brain Res. Vol. 124, Elsevier, Amsterdam.

    Google Scholar 

  59. Wisden, W., Seeburg, P. H., and Monyer, H. 2000. AMPA, kainate and NMDA ionotropic glutamate receptor expression—an in situ hybridization atlas. Pages 99–143, in Ottesen, O. P. and Storm-Mathisen, J. T. (eds.), Glutamate, Handbook of Chemical Neuroanatomy Vol. 18, Elsevier, Amsterdam.

    Google Scholar 

  60. Smeyne, R. T. and Goldowitz, D. 1989. Development and death of external granular layer cells in the weaver mouse cerebellum: A quantitative study. J. Neurosci. 9:1608–1620.

    Google Scholar 

  61. Smeyne, R. T. and Goldowitz, D. 1990. Purkinje cell loss is due to a direct action of the weaver gene in Purkinje cells: Evidence from chimeric mice. Dev. Brain Res. 52:211–218.

    Google Scholar 

  62. Müller, T., Grosche, J., Ohlemeyer, C., and Kettermann, H. 1993. NMDA-activated currents in Bergmann glial cells. Neuro-Report 4:671–674.

    Google Scholar 

  63. Petralia, R. S., Rubio, M. E., Wang, Y.-X., and Wenthold, R. J. 2000. Regional and synaptic expression of ionotropic glutamate receptors. Pages 145–182. in Ottersen, O. P. and Storm-Mathisen, J. T. (eds.), Glutamate, Handbook of Chemical Neuroanatomy Vol. 18, Elsevier, Amsterdam.

    Google Scholar 

  64. Newman, P. P. and Reza, H. 1979. Functional relationships between the hippocampus and the cerebellum: An electrophysiological study in the cat. J. Physiol. (Lond.) 287:405–426.

    Google Scholar 

  65. Fuller, T. A., Russchen, F. T., and Price, J. L. 1987. Sources of presumptive glutamatergic/aspartatergic afferents to the rat ventral striatopallidal region. J. Comp. Neurol. 258:317–338.

    Google Scholar 

  66. Storm-Mathisen, J., Danbolt, N. C., and Ottersen, O. P. 1995. Localization of glutamate and its membrane transport proteins. Pages 1–18, in Stone, T. W. (ed.), CNS Neurotransmitters and Neuromodulators: Glutamate, CRC, Boca Raton, Florida.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reader, T.A., Sénécal, J. Distribution of Glutamate Receptors of the NMDA Subtype in Brains of Heterozygous and Homozygous Weaver Mutant Mice. Neurochem Res 26, 579–589 (2001). https://doi.org/10.1023/A:1010922900470

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010922900470

Navigation