Skip to main content
Log in

Topological Properties of the Born–Oppenheimer Approximation and Implications for the Exact Spectrum

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Born–Oppenheimer approximation can generally be applied when a quantum system is coupled with another comparatively slower system which is treated classically: for a fixed classical state, one considers a stationary quantum vector of the quantum system. Geometrically, this gives a vector bundle over the classical phase space of the slow motion. The topology of this bundle is characterized by integral Chern classes. In the case where the whole system is isolated with a discrete energy spectrum, we show that these integers have a direct manifestation in the qualitative structure of this spectrum: the spectrum is formed by groups of levels and these integers determine the precise number of levels in each group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avron, J. E., Sadun, L., Segert, J. and Simon, B.: Chern numbers, quaternions, and Berry's phases in Fermi systems, Comm. Math. Phys. 124(4) (1989), 595–627.

    Google Scholar 

  2. Berry, M. V.: Quantal phase factors accompanying adiabatic changes, Proc. Roy. Soc. London 45 (1984).

  3. Bordemann, M., Meinrenken, E. and Schlichenmaier, M.: Toeplitz quantization of Kaehler manifolds and gl(N), N → ∞ limits, Comm. Math. Phys. 165(2) (1994), 281–296.

    Google Scholar 

  4. Fedosov, B.: The Atiyah-Bott-Patodi method in deformation quantization, Comm. Math. Phys. 209 (2000), 691–728.

    Google Scholar 

  5. Van Hecke, C., Sadovskií, D. A. and Zhilinskií, B. I.: Qualitative analysis of molecular rotation starting from inter-nuclear potential, Europ. Phys. J. D 7 (1999), 199–209.

    Google Scholar 

  6. Eguchi, T., Gilkey, P. B. and Hanson, A. J.: Gravitation, gauge theories and differential geometry Phys. Rep. 66 (1980), 213–393.

    Google Scholar 

  7. Hawkins, E.: Geometric quantization of vector bundles, e-print: math.QA.9808116.

  8. Emmrich, C. and Weinstein, A.: Geometry of the transport equation in multicomponent WKB approximations, Comm. Math. Phys. 176(3) (1996), 710–711.

    Google Scholar 

  9. Faure, F.: Topological properties of quantum periodic Hamiltonians, J. Phys. A, Math. Gen. 33 (2000), 531–555.

    Google Scholar 

  10. Faure, F. and Zhilinskií, B.: Topological Chern indices in molecular spectra, Phys. Rev. Lett. 85(5) (2000), 960–963.

    Google Scholar 

  11. Griffiths, P. and Harris, J.: Principles of Algebraic Geometry, Wiley-Interscience, New York, 1978.

    Google Scholar 

  12. Michel, L. and Zhilinskií, B. I.: Symmetry, invariants, and topology, Phys. Rep. 341, 2001.

  13. Lazutkin, V. F.: KAM Theory and Semiclassical Approximations to Eigenfunctions, with an addendum by A. I. Shnirelman, Springer-Verlag, Berlin, 1993.

    Google Scholar 

  14. Nakahara, M.: Geometry, Topology and Physics, Grad. Students Ser. Phys., Adam Hilger, Bristol, 1990.

    Google Scholar 

  15. Perelmov, A.: Generalized Coherent States and their Applications, Springer-Verlag, Berlin, 1986.

    Google Scholar 

  16. Sadovskií, D. A. and Zhilinskií, B. I.: Qualitative analysis of vibration-rotation Hamiltonians for spherical top molecules, Molec. Phys. 64 (1988), 109–128.

    Google Scholar 

  17. Schlichenmaier, M.: e-prints: QA/9902066, QA/9910137, QA/9903105, 1999.

  18. Takahashi, K.: Wigner and Husimi functions in quantum mechanics, J. Phys. Soc. Japan 55 (1986).

  19. Takahashi, K.: Distribution functions in classical and quantum mechanics, Progr. Theoret. Phys. 98 (1989), 109–156.

    Google Scholar 

  20. Zhilinskií, B. I., Pavlov-Verevkin, Vx.B. and Sadovskií, D. A.: On the dynamical meaning of the diabolic points, Europhys. Lett. 6 (1988), 573.

    Google Scholar 

  21. Zhang, W. M., Feng, D. H. and Gilmore, R.: Coherent states: theory and some applications, Rev. Modern Phys. 62 (1990), 867–927.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faure, F., Zhilinskii, B. Topological Properties of the Born–Oppenheimer Approximation and Implications for the Exact Spectrum. Letters in Mathematical Physics 55, 219–238 (2001). https://doi.org/10.1023/A:1010912815438

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010912815438

Navigation