Skip to main content
Log in

Comparative Analysis of Superoxide Dismutase Activity between Acute Pharmacological Models and a Transgenic Mouse Model of Huntington's Disease

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We examined the activity of striatal superoxide dismutase (SOD) in two acute pharmacological models of Huntington's disease (HD), and compared it with SOD activity in the striata of mice transgenic for the HD mutation. Total SOD, and Cu/ZnSOD activities increased in young transgenic mice, but decreased in older (35 week) mice. We consider that the increased enzyme activity represents a compensatory mechanism to protect cells from free radical-induced damage, but the system becomes insufficient in older animals. Major decreases in SOD activity were also observed both after quinolinic acid and 3-nitropropionic acid intrastriatal injections. The present results indicate that in both types of HD models striatal oxidative damage occurs, and that it is associated with alterations in the cellular antioxidant system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harper, P. S. 1996. The natural history of Huntington's disease. Pages 123–136, in Harper, P. S. (ed.), Huntington's disease 2nd edn, WB Saunders, London.

    Google Scholar 

  2. Coyle, J. T. and Schwarcz, R. 1976. Lesion of striatal neurones with kainic acid provides a model for Huntington's chorea. Nature 263:244–246.

    Google Scholar 

  3. Schwarcz, R., Hokfelt, T., Fuxe, K., Jonsson, G., Goldstein, M., and Terenius, L. 1979. Ibotenic acid-induced neuronal degeneration: a morphological and neurochemical study. Exp. Brain Res. 37:199–216.

    Google Scholar 

  4. Beal, M. F., Kowall, N. W., Ellison, D. W., Mazurek, M. F., Schwarcz, K. J., and Martin, J. B. 1986. Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature 321:168–171.

    Google Scholar 

  5. Brouillet, E., Jenkins, B. G., Hyman, B. T., Ferrante, R. J., Kowall, N. W., Srivastava, R., Roy, D. S., Rosen, B. R., and Beal, M. F. 1993. Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J. Neurochem. 60:356–359.

    Google Scholar 

  6. The Huntington's disease collaborative research group. 1993. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosome. Cell 72:971–983.

    Google Scholar 

  7. Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., Hetherington, C., Lawton, M., Trottier, Y., Lehrach, H., Davies, S. W., and Bates, G. P. 1996. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause progressive neurological phenotype in transgenic mice. Cell 87:493–506.

    Google Scholar 

  8. Reddy, P. H., Williams, M., Charles, V., Garrett, L., Pike-Buchanan, L., Whetsell, W. O., Jr., Miller, G., and Tagle, D. A. 1998. Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA. Nat. Genet. 20:198–202.

    Google Scholar 

  9. Hodgson, J. G., Agopyan, N., Gutekunst, C. A., Leavitt, B. R., LePiane, F., Singaraja, R., Smith, D. J., Bissada, N., McCutcheon, K., Nasir, J., Jamot, L., Li, X. J., Stevens, M. E., Rosemond, E., Roder, J. C., Phillips, A. G., Rubin, E. M., Hersch, S. M., and Hayden, M. R. 1999. A YAC mouse model for Huntington's disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23:181–192.

    Google Scholar 

  10. Yamamoto, A., Lucas, J. J., and Hen, R. 2000. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 101:57–66.

    Google Scholar 

  11. Pérez-Severiano, F., Ríos, C., and Segovia, J. 2000. Striatal oxidative damage parallels the expression of a neurological phenotype in mice transgenic for the mutation of Huntington's disease. Brain Res. 862:234–237.

    Google Scholar 

  12. Tabrizi, S. J., Workman, J., Hart, P. E., Mangiarini, L., Mahal, A., Bates, G., Cooper, J. M., and Schapira, A. H. 2000. Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann. Neurol. 47:80–86.

    Google Scholar 

  13. Beal, M. F. 1998. Mitochondrial dysfunction in neurodegenerative diseases. Biochim. Biophys. Acta 1366:211–223.

    Google Scholar 

  14. Schapira, A. H. 1999. Mitochondrial involvement in Parkinson's disease, Huntington's disease, hereditary spastic paraplegia and Friedreich's ataxia. Biophys. Acta 1410:159–170.

    Google Scholar 

  15. Santamaría, A., Ríos, C. 1993. MK-801, an N-methyl-D-aspartate receptor antagonist, blocks quinolinic acid-induced lipid peroxidation in rat corpus striatum. Neurosci. Lett. 159:51–54.

    Google Scholar 

  16. Rodriguez-Martinez, E., Camacho, A., Maldonado, P. D., Pedraza-Chaverri, J., Santamaria, D., Galvan-Arzate, S., and Santamaría, A. 2000. Effect of quinolinic acid on endogenous antioxidants in rat corpus striatum. Brain Res. 858:436–439.

    Google Scholar 

  17. Paxinos, G. and Watson, G. 1984. The rat brain in stereotaxic coordinates. Academic Press, Sydney.

    Google Scholar 

  18. Oberley, L. W. and Spitz, D. R. 1984. Assay of superoxide dismutase activity in tumor tissue. Methods Enzymol. 105:457–464.

    Google Scholar 

  19. Iqbal, J. and Whitney, P. 1991. Use of cyanide and diethyldithiocarbamate in the assay of superoxide dismutases. Free Radic. Biol. Med. 10:69–77.

    Google Scholar 

  20. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the folin-phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  21. Schwartz, P. J. and Coyle, J. T. 1998. Effects of over expression of the cytoplasmic copper-zinc superoxide dismutase on the survival of neurons in vitro. Synapse 29:206–212.

    Google Scholar 

  22. Hansson, O., Petersén, Å., Leist, M., Nicotera, P., Castilho, R. F., and Brundin, P. 1999. Transgenic mice expressing a Huntington's disease mutation are resistant to quinolinic acid-induced striatal excitotoxicity, Proc. Natl. Acad. Sci. USA 96:8727–8732.

    Google Scholar 

  23. Chen, M., Ona, V. O., Li, M., Ferrante, R. J., Fink, K. B., Zhu, S., Bian, J., Guo, L., Farrell, L. A., Hersch, S. M., Hobbs, W., Vonsattel, J.-P., Cha, J. H., and Friedlander, R. M. 2000. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat. Med. 6:797–801.

    Google Scholar 

  24. Beal, M. F., Ferrante, R. J., Swartz, K. J., and Kowall, N. W. 1991. Chronic quinolinic acid lesions in rats closely resemble Huntington's disease. J. Neurosci. 11:1649–1659.

    Google Scholar 

  25. Koh, J. Y., Peters, S., and Choi, D. W. 1986. Neurons containing NADPH-diaphorase are selectively resistant to quinolinate toxicity. Science 234:73–76.

    Google Scholar 

  26. Ludolph, A. C., Spencer, P. S., Hammerstad, J., and Sabri, M. 1991. 3-Nitropropionic acid-exogenous animal neurotoxin and possible human striatal toxin. Can. J. Neurol. Sci. 18:492–498.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santamaría, A., Pérez-Severiano, F., Rodríguez-Martínez, E. et al. Comparative Analysis of Superoxide Dismutase Activity between Acute Pharmacological Models and a Transgenic Mouse Model of Huntington's Disease. Neurochem Res 26, 419–424 (2001). https://doi.org/10.1023/A:1010911417383

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010911417383

Navigation