Skip to main content
Log in

Integrated optical cross strip polarizer concept

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Passing across an abrupt junction from a thick vertically bimodal waveguide to a thinner single mode segment, guided light can undergo complete destructive interference, provided that the geometry and the phases of the modes in the initial segment are properly adjusted. We propose to employ this effect to realize a simple polarizer configuration, using a strip that is etched from a planar waveguide. A beam of light is made to pass the strip perpendicularly. The light enters from the single mode waveguide outside the strip into the strip segment, which is configured to support two modes. At the end of the strip, apart from reflections, the amount of power that is guided in the following lower segment depends on the local phases of the two modes. These phases are different for TE and TM light, hence we may expect a polarization dependent power transfer, resulting in polarizer performance for a properly selected geometry. The paper describes in detail the modeling of the device in terms of rigorous mode expansion. Design guidelines and tolerance requirements for geometric and material parameters are discussed. For typical Si3N4/SiO2 materials, our calculations predict a peak performance of 34 dB polarization discrimination and 0.3 dB insertion loss for a device with a total length of about 12 μm that selects TE polarization at a wavelength of 1.3 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bersiner, L., U. Hempelmann and E. Strake. J. Opt. Soc. Am. B 8 422, 1991.

    Google Scholar 

  • Bloemer, M.J. and J.W. Haus. Opt. Lett. 17 598, 1992a.

    Google Scholar 

  • Bloemer, M.J. and J.W. Haus. Appl. Phys. Lett. 61 1619, 1992b.

    Google Scholar 

  • Bloemer, M.J. and J.W. Haus. J. Lightwave Technol. 14 1534, 1996.

    Google Scholar 

  • Brooke, G.H. and M.M.Z. Kharadly. IEEE Trans. Microwave Theory Tech. MTT-30 760, 1982.

    Google Scholar 

  • Findakly, T., B. Chen and D. Booher. Opt. Lett. 8 641, 1983.

    Google Scholar 

  • Han, K.G., D.H. Kim, J.C. Jo and S.S. Choi. Opt. Lett. 16 1086, 1991.

    Google Scholar 

  • Han, K.G., S. Kim and S.S. Choi. Opt. Lett. 15 108, 1990.

    Google Scholar 

  • Hempelmann, U., H. Herrmann, G. Mrozynski, V. Reimann and W. Sohler. J. Lightwave Technol. 13 1750, 1995.

    Google Scholar 

  • Johnstone, W., G. Stewart, T. Hart and B. Culshaw. J. Lightwave Technol. 8 538, 1990.

    Google Scholar 

  • Lee, S.S., S. Garner, W.H. Steier and S.Y. Shin. Appl. Opt. 38 530, 1999.

    Google Scholar 

  • Lohmeyer, M., N. Bahlmann and P. Hertel. Opt. Commun. 163 86, 1999a.

    Google Scholar 

  • Lohmeyer, M., N. Bahlmann, O. Zhuromskyy and P. Hertel. Opt. Quantum Electr. 31 877, 1999b.

    Google Scholar 

  • Nakano, T., K. Baba and M. Miyagi. J. Opt. Soc. Am. A 11 2030, 1994.

    Google Scholar 

  • Oh, M.-C., S.-Y. Shin, W.-Y. Hwang and J.-J. Kim. IEEE Photonics Technol. Lett. 8 375, 1996.

    Google Scholar 

  • Pérez, C.S., A. Morand, P. Benech, S. Tedjini, D. Bosc and A. Rousseau. Low cost integrated optical polarizer with an hybrid structure of birefringent polymer and ion-exchanged glass waveguide. In: Integrated Optics Devices III, eds. G.C. Righini and S.I. Najafi. SPIE Proceedings, Vol. 3620, p. 118, 1999.

  • Saini, M., E.K. Sharma and M. Singh. Opt. Lett. 20 365, 1995.

    Google Scholar 

  • Shani, Y., C.H. Henry, R.C. Kistler and K.J. Orlowsky. Appl. Opt. 29 337, 1990.

    Google Scholar 

  • Sletten, M.A. and S.R. Seshadri. J. Opt. Soc. Am. A 7 1174, 1990.

    Google Scholar 

  • Stoffer, R., H.J.W.M. Hoekstra, R.M. de Ridder, E. van Groesen and F.P.H. van Beckum. Opt. Quantum Electr. 32 947, 2000.

    Google Scholar 

  • Sztefka, G. and H.P. Nolting. IEEE Photonics Technol. Lett. 5 554, 1993.

    Google Scholar 

  • Taflove, A. Computational Electrodynamics: The Finite Difference Time Domain Method. Norwood, MA, USA: Artech House Inc., 1995.

    Google Scholar 

  • Thyagarajan, K., S. Diggavi, A.K. Ghatak, W. Johnstone, G. Stewart and B. Culshaw. Opt. Lett. 15 1041, 1990.

    Google Scholar 

  • Thyagarajan, K. and S. Pilevar. J. Lightwave Technol. 10 1334, 1992.

    Google Scholar 

  • Thyagarajan, K., S.D. Seshadri and A.K. Ghatak. J. Lightwave Technol. 9 315, 1991.

    Google Scholar 

  • Trutschel, U., F. Ouelette, V. Delisle, M.A. Duguay, G. Fogarty and F. Lederer. J. Lightwave Technol. 13 239, 1995.

    Google Scholar 

  • Vassallo, C. Optical Waveguide Concepts. Amsterdam, Elsevier, 1991.

    Google Scholar 

  • Veasey, D.L., R.K. Hickernell, D.R. Larson and T.E. Batchman. Opt. Lett. 16 717, 1991.

    Google Scholar 

  • Veasey, D.L., D.R. Larson and I. Veigl. Appl. Opt. 33 1242, 1994.

    Google Scholar 

  • Willems, J., J. Haes and R. Baets. Opt. Quantum Electr. 27 995, 1995.

    Google Scholar 

  • Wörhoff, K., P.V. Lambeck, H. Albers, O.F.J. Noordman, N.F. van Hulst and T.J.A. Popma. Optimization of LPCVD Silicon Oxynitride growth to large refractive index homogeneity and layer thickness uniformity. In: Micro-optical Technologies for Measurement, Sensors, and Microsystems II, eds. O.M. Parriaux, E.B. Kley, B. Culshaw and M. Breidne, SPIE Proceedings, Vol. 3099, p. 257, 1997.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Lohmeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohmeyer, M., Stoffer, R. Integrated optical cross strip polarizer concept. Optical and Quantum Electronics 33, 413–431 (2001). https://doi.org/10.1023/A:1010894801196

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010894801196

Navigation